Development of a Monsoon Depression and Its Interaction with the Large-Scale Background: A Case Study

S. K. Mishra aPune, India

Search for other papers by S. K. Mishra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Structure and time evolution of the large-scale background and an embedded synoptic-scale monsoon depression and their interactions are studied. The depression formation is preceded by a cyclonic circulation around 400 hPa. The Fourier-based scale separation technique is used to isolate large (wavenumbers 0–8) and synoptic-scale (wavenumbers 12–60). The wavelength and depression center is determined objectively. The synoptic-scale depression has an average longitudinal wavelength of around 1900 km and a north–south size of 1100 km; it is most intense with a vorticity of 20.5 × 10−5 s−1 at 900 hPa. The strongest cold core of −3.0°C below 850 hPa and the above warm core of around 2.0°C are evident. The depression is tilted southwestward in the midtroposphere with no significant vertical tilt in the lower troposphere. The mean maximum intensity and upward motion over the life cycle of depression are in close agreement with the composite values. A strong cyclonic shear zone is developed in the midtroposphere preceding the depression. The necessary condition for barotropic (baroclinic) instability is satisfied in the midtroposphere (boundary layer). Strong northward transport of momentum by the depression against the southward shear is found. The strong growth of the MD in the lower troposphere is due to downward transfer of excess energy gained in the midtroposphere from the barotropic energy conversion and east–west direct thermal circulation as the vertical energy flux. The baroclinic interaction contributes to the maintenance of the cold core in the lower troposphere. The diabatic heating rate is computed and its role in the genesis and growth of MD is investigated.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. K. Mishra, skmishra1341@gmail.com

Abstract

Structure and time evolution of the large-scale background and an embedded synoptic-scale monsoon depression and their interactions are studied. The depression formation is preceded by a cyclonic circulation around 400 hPa. The Fourier-based scale separation technique is used to isolate large (wavenumbers 0–8) and synoptic-scale (wavenumbers 12–60). The wavelength and depression center is determined objectively. The synoptic-scale depression has an average longitudinal wavelength of around 1900 km and a north–south size of 1100 km; it is most intense with a vorticity of 20.5 × 10−5 s−1 at 900 hPa. The strongest cold core of −3.0°C below 850 hPa and the above warm core of around 2.0°C are evident. The depression is tilted southwestward in the midtroposphere with no significant vertical tilt in the lower troposphere. The mean maximum intensity and upward motion over the life cycle of depression are in close agreement with the composite values. A strong cyclonic shear zone is developed in the midtroposphere preceding the depression. The necessary condition for barotropic (baroclinic) instability is satisfied in the midtroposphere (boundary layer). Strong northward transport of momentum by the depression against the southward shear is found. The strong growth of the MD in the lower troposphere is due to downward transfer of excess energy gained in the midtroposphere from the barotropic energy conversion and east–west direct thermal circulation as the vertical energy flux. The baroclinic interaction contributes to the maintenance of the cold core in the lower troposphere. The diabatic heating rate is computed and its role in the genesis and growth of MD is investigated.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. K. Mishra, skmishra1341@gmail.com
Save
  • Bettge, W., and D. P. Baumhefner, 1980: A method to decompose the spatial characteristics of meteorological variables within a limited domain. Mon. Wea. Rev., 108, 843854, https://doi.org/10.1175/1520-0493(1980)108<0843:AMTDTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, F., and D. G. Vincent, 1980: Zonal and eddy components of the synoptic-scale energy budget during intensification of Hurricane Carmen (1974). Mon. Wea. Rev., 108, 954965, https://doi.org/10.1175/1520-0493(1980)108<0954:ZAECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stren, 1962: On the stability of internal jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, A. D., and R. Krishnan, 2011: Dynamical response of the South Asian monsoon trough to latent heating from stratiform and convective precipitation. J. Atmos. Sci., 68, 13471363, https://doi.org/10.1175/2011JAS3705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2016: Perspectives on moist baroclinic instability implications for the growth of monsoon depressions. J. Atmos. Sci., 73, 17671788, https://doi.org/10.1175/JAS-D-15-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, P. K., 1986: Monsoons. WMO 613, 155 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and W. R. Boos, 2019a: Monsoon depression amplification by moist barotropic instability in a vertically sheared environment. Quart. J. Roy. Meteor. Soc., 145, 26662684, https://doi.org/10.1002/qj.3585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and W. R. Boos, 2019b: Barotropic growth of monsoon depressions. Quart. J. Roy. Meteor. Soc., 145, 824844, https://doi.org/10.1002/qj.3467.

  • Douglas, M. V., 1992: Structure and dynamics of two monsoon depression. Part II: Vorticity and heat budgets. Mon. Wea. Rev., 120, 15481564, https://doi.org/10.1175/1520-0493(1992)120<1548:SADOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godbole, R. V., 1977: The composite structure of the monsoon depression. Tellus, 29, 2540, https://doi.org/10.1111/j.2153-3490.1977.tb00706.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., R. N. Keshavamurty, and V. Satyan, 1980: Role of barotropic, baroclinic and combined barotropic-baroclinic instability for the growth of monsoon depressions and mid tropospheric cyclones. Proc. Indian Acad. Sci., Earth Planet. Sci., 89, 7997, https://doi.org/10.1007/BF02841521.

    • Search Google Scholar
    • Export Citation
  • Holopainen, E., and P. Nurmi, 1979: Acceleration of a diffluent jet stream by horizontal sub-grid scale processes—An example of a scale interaction study employing a horizontal filtering technique. Tellus, 31, 246253, https://doi.org/10.3402/tellusa.v31i3.10432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. G. Turner, P. M. Inness, D. E. Parker, and R. C. Levine, 2016: On the structure and dynamics of Indian monsoon depressions. Mon. Wea. Rev., 144, 33913416, https://doi.org/10.1175/MWR-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • India Meteorological Department, 2011: Tracks of cyclones and depressions over North Indian Ocean (1981 onwards). India Meteorological Department Tech. Note, 84 pp.

  • Keshavamurty, R. N., G. C. Asnani, P. V. Pillai, and S. K. Das, 1978: Some studies of the growth of monsoon disturbances. Proc. Indian Acad. Sci., Earth Planet. Sci., 87, 6175, https://doi.org/10.1007/BF02839386.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., M. Kanamitsu, R. Godbole, C. Chang, F. Carr, and J. H. Chow, 1975: Study of a monsoon depression (I) synoptic structure. J. Meteor. Soc. Japan, 53, 227240, https://doi.org/10.2151/jmsj1965.53.4_227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., M. Kanamitsu, R. Godbole, C. Chang, F. Carr, and J. H. Chow, 1976: Study of a monsoon depression (II) dynamic structure. J. Meteor. Soc. Japan, 54, 208225, https://doi.org/10.2151/jmsj1965.54.4_208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazumdar, A. B., M. Khole, and S. S. Devi, 2007: Weather in India, Monsoon season (June to September 2006). Mausam, 58, 409458.

  • Mishra, S. K., 2018: On the evolution of planetary-scale fields and genesis of monsoon depressions over the Indian region. Quart. J. Roy. Meteor. Soc., 144, 129141, https://doi.org/10.1002/qj.3189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., and P. S. Salvekar, 1980: Role of baroclinic instability in the development of monsoon disturbances. J. Atmos. Sci., 37, 383394, https://doi.org/10.1175/1520-0469(1980)037<0383:ROBIIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., V. B. Rao, and M. A. Gan, 2001: Structure and evolution of the large-scale flow and an embedded upper-tropospheric cyclonic vortex over Northeast Brazil. Mon. Wea. Rev., 129, 16731688, https://doi.org/10.1175/1520-0493(2001)129<1673:SAEOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, A. K., A. K. Bohra, M. N. Rajeevan, and T. N. Krishnamurti, 2009: Daily Indian precipitation analyses formed merger of rain-gauge with TRMM TMPA satellite derived rainfall estimates. J. Meteor. Soc. Japan, 87A, 265279, https://doi.org/10.2151/jmsj.87A.265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, R. E., J. W. Watson, D. G. Vincent, and G. J. Boer, 1972: The General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes. Vol. 1, The MIT Press, 258 pp.

  • Nitta, T., and K. Masuda, 1981: Observational study of a monsoon depression developed over the Bay of Bengal during summer MONEX. J. Meteor. Soc. Japan, 59, 672682, https://doi.org/10.2151/jmsj1965.59.5_672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajamani, S., and D. N. Sikdar, 1989: Some dynamical characteristics and thermal structure of monsoon depressions over the Bay of Bengal. Tellus, 41A, 255269, https://doi.org/10.1111/j.1600-0870.1989.tb00380.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, K. R., and C.-P. Chang, 1983: The baroclinic processes of monsoon depressions. Mon. Wea. Rev., 111, 15061514, https://doi.org/10.1175/1520-0493(1983)111<1506:TBPOMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, K. R., and S. Saha, 1988: Thermal budget of a monsoon depression during FGGE-MONEX 1979. Mon. Wea. Rev., 116, 242255, https://doi.org/10.1175/1520-0493(1988)116<0242:TBOAMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, K. R., F. Sanders, and J. Shukla, 1981: Westward propagating predecessors of monsoon depressions. Mon. Wea. Rev., 109, 330343, https://doi.org/10.1175/1520-0493(1981)109<0330:WPPOMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvekar, P. S., and S. K. Mishra, 1985: Baroclinic energetics and zonal plane distribution of monsoon disturbances. Pure Appl. Geophys., 123, 448462, https://doi.org/10.1007/BF00880743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvekar, P. S., L. George, and S. K. Mishra, 1983: Contribution of baroclinic mechanism in the formation of the depression during MONEX-79. Arch. Meteor. Geophys. Bioklimatol., 32A, 5569, https://doi.org/10.1007/BF02272710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1977: Barotropic-baroclinic instability of mean zonal wind during summer monsoon. Pure Appl. Geophys., 115, 14491461, https://doi.org/10.1007/BF00874418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subrahmanyam, D., M. K. Tandon, L. George, and S. K. Mishra, 1981: Role of barotropic mechanism in the development of a monsoon depression: A MONEX study. Pure Appl. Geophys., 119, 901912, https://doi.org/10.1007/BF00878958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiin-Nielsen, A., 1973 : Dynamic Meteorology. WMO, 334 pp.

  • Yoon, J. H., and W. R. J. Huang, 2012: Indian monsoon depression: Climatology and variability. Modern Climatology, S. Y. Wang, Ed., In Tech, 45–72.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 361 1 0
Full Text Views 417 119 6
PDF Downloads 456 88 2