• Achatz, U., R. Klein, and F. Senf, 2010: Gravity waves, scale asymptotics and the pseudo–incompressible equations. J. Fluid Mech., 663, 120147, https://doi.org/10.1017/S0022112010003411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almgren, A. S., J. B. Bell, C. A. Rendleman, and M. Zingale, 2006: Low Mach number modeling of type la supernovae. I. Hydrodynamics. Astrophys. J., 637, 922936, https://doi.org/10.1086/498426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almgren, A. S., J. B. Bell, A. Nonaka, and M. Zingale, 2008: Low Mach number modeling of type la supernovae. III. Reactions. Astrophys. J., 684, 449470, https://doi.org/10.1086/590321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Baldwin, M. P., and Coauthors, 2021: Sudden stratospheric warmings. Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708.

  • Batchelor, G., 1953: The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Quart. J. Roy. Meteor. Soc., 79, 224235, https://doi.org/10.1002/qj.49707934004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benacchio, T., and R. Klein, 2019: A semi-implicit compressible model for atmospheric flows with seamless access to soundproof and hydrostatic dynamics. Mon. Wea. Rev., 147, 42214240, https://doi.org/10.1175/MWR-D-19-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benacchio, T., W. P. O’Neill, and R. Klein, 2014: A blended soundproof-to-compressible numerical model for small- to mesoscale atmospheric dynamics. Mon. Wea. Rev., 142, 44164438, https://doi.org/10.1175/MWR-D-13-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The interaction between atmospheric gravity waves and large-scale flows: An efficient description beyond the nonacceleration paradigm. J. Atmos. Sci., 73, 48334852, https://doi.org/10.1175/JAS-D-16-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonaventura, L., 2000: A semi-implicit semi-Lagrangian Scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows. J. Comput. Phys., 158, 186213, https://doi.org/10.1006/jcph.1999.6414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borchert, S., U. Achatz, and M. Fruman, 2014: Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment. J. Fluid Mech., 758, 287311, https://doi.org/10.1017/jfm.2014.528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn., 3, 17601765, https://doi.org/10.1063/1.857955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., and M. Restelli, 2008: A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys., 227, 38493877, https://doi.org/10.1016/j.jcp.2007.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., J. F. Kelly, and E. M. Costantinescu, 2013: Implicit–explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput., 35, B1162B1194, https://doi.org/10.1137/120876034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, https://doi.org/10.1175/BAMS-86-11-1609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickel, S., N. Adams, and J. Domaradzki, 2006: An adaptive local deconvolution method for implicit LES. J. Comput. Phys., 213, 413436, https://doi.org/10.1016/j.jcp.2005.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zuelicke, and U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech., 838, 541, https://doi.org/10.1017/jfm.2017.883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Road, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaacson, E., and H. B. Keller, 1966: Analysis of Numerical Methods. Wiley, 580 pp.

  • Kadioglu, S., R. Klein, and M. Minion, 2008: A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics. J. Comput. Phys., 227, 20122043, https://doi.org/10.1016/j.jcp.2007.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemm, F., 2010: A comparative study of TVD-limiters—Well-known limiters and an introduction of new ones. Int. J. Numer. Methods Fluids, 67, 404440, https://doi.org/10.1002/fld.2357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., H.-Y. Chun, S.-H. Park, I.-S. Song, and H.-J. Choi, 2016: Characteristics of gravity waves generated in the jet–front system in a baroclinic instability simulation. Atmos. Chem. Phys., 16, 47994815, https://doi.org/10.5194/acp-16-4799-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, R., 2009: Asymptotics, structure, and integration of soundproof atmospheric flow equations. Theory Comput. Fluid Dyn., 23, 161195, https://doi.org/10.1007/s00162-009-0104-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78107, https://doi.org/10.1175/1520-0469(1978)035<0078:NSOHMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., P. Smolarkiewicz, and P. Dörnbrack, 2012: Modelling atmospheric flows with adaptive moving meshes. J. Comput. Phys., 231, 27412763, https://doi.org/10.1016/j.jcp.2011.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1992: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A Fluid Dyn., 4, 633635, https://doi.org/10.1063/1.858280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, Z., S.-W. Son, A. Butler, H. Hendon, H. Kim, A. Sobel, S. Yoden, and C. Zhang, 2021: The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nat. Rev. Earth Environ., 2, 477489, https://doi.org/10.1038/s43017-021-00173-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melvin, T., T. Benacchio, B. Shipway, N. Wood, J. Thuburn, and C. Cotter, 2019: A mixed finite-element, finite-volume, semi-implicit discretization for atmospheric dynamics: Cartesian geometry. Quart. J. Roy. Meteor. Soc., 145, 28352853, https://doi.org/10.1002/qj.3501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179, https://doi.org/10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, W., and R. Klein, 2014: A moist pseudo-incompressible model. Atmos. Res., 142, 133141, https://doi.org/10.1016/j.atmosres.2013.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, https://doi.org/10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, https://doi.org/10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, https://doi.org/10.1002/2012RG000419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polichtchouk, I., and R. Scott, 2020: Spontaneous inertia-gravity wave emission from a nonlinear critical layer in the stratosphere. Quart. J. Roy. Meteor. Soc., 146, 15161528, https://doi.org/10.1002/qj.3750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prusa, J., P. Smolarkiewicz, and A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Comput. Fluids, 37, 11931207, https://doi.org/10.1016/j.compfluid.2007.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qaddouri, A., C. Girard, S. Husain, and R. Aider, 2021: Implementation of a semi-Lagrangian fully implicit time integration of the unified soundproof system of equations for numerical weather prediction. Mon. Wea. Rev., 149, 20112029, https://doi.org/10.1175/MWR-D-20-0291.1.

    • Search Google Scholar
    • Export Citation
  • Remmler, S., and S. Hickel, 2012: Direct and large eddy simulation of stratified turbulence. Int. J. Heat Fluid Flow, 35, 1324, https://doi.org/10.1016/j.ijheatfluidflow.2012.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remmler, S., and S. Hickel, 2013: Spectral structure of stratified turbulence: Direct numerical simulations and predictions by large eddy simulation. Theory Comput. Fluid Dyn., 27, 319336, https://doi.org/10.1007/s00162-012-0259-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remmler, S., S. Hickel, M. Fruman, and U. Achatz, 2015: Validation of large-eddy simulation methods for gravity wave breaking. J. Atmos. Sci., 72, 35373562, https://doi.org/10.1175/JAS-D-14-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Restelli, M., and F. X. Giraldo, 2009: A conservative discontinuous Galerkin semi-implicit formulation for the Navier–Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput., 31, 22312257, https://doi.org/10.1137/070708470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieper, F., S. Hickel, and U. Achatz, 2013: A conservative integration of the pseudo-incompressible equations with implicit turbulence parameterization. Mon. Wea. Rev., 141, 861886, https://doi.org/10.1175/MWR-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and Coauthors, 2012: Climate change projections and stratosphere-troposphere interaction. Climate Dyn., 38, 20892097, https://doi.org/10.1007/s00382-011-1080-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, https://doi.org/10.1175/JAS-D-12-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, R., 1970: Smoothing, filtering and boundary effects. Rev. Geophys., 8, 359387, https://doi.org/10.1029/RG008i002p00359.

  • Simmons, A. J., B. J. Hoskins, and D. M. Burridge, 1978: Stability of the semi-implicit method of time integration. Mon. Wea. Rev., 106, 405412, https://doi.org/10.1175/1520-0493(1978)106<0405:SOTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and J. B. Klemp, 1994: Efficiency and accuracy of the Klemp–Wilhelmson time-splitting technique. Mon. Wea. Rev., 122, 26232630, https://doi.org/10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., and L. G. Margolin, 1997: On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows. Atmos.–Ocean, 35 (Suppl. 1), 127152, https://doi.org/10.1080/07055900.1997.9687345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., and A. Dörnbrack, 2008: Conservative integrals of adiabatic Durran’s equations. Int. J. Numer. Methods Fluids, 56, 15131519, https://doi.org/10.1002/fld.1601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., L. G. Margolin, and A. A. Wyszogrodzki, 2001: A class of nonhydrostatic global models. J. Atmos. Sci., 58, 349364, https://doi.org/10.1175/1520-0469(2001)058<0349:ACONGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., C. Kühnlein, and N. Wedi, 2014: A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. J. Comput. Phys., 263, 185205, https://doi.org/10.1016/j.jcp.2014.01.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., C. Kühnlein, and N. Wedi, 2019: Semi-implicit integrations of perturbation equations for all-scale atmospheric dynamics. J. Comput. Phys., 376, 145159, https://doi.org/10.1016/j.jcp.2018.09.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 122, https://doi.org/10.1002/fld.1650170103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Vorst, H. A., 1992: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13, 631644, https://doi.org/10.1137/0913035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Leer, B., 2006: Upwind and high–resolution methods for compressible flow: From donor cell to residual–distribution schemes. 16th AIAA Computational Fluid Dynamics Conf., Orlando, FL, American Institute of Aeronautics and Astronautics, 2003–3559, https://doi.org/10.2514/6.2003-3559.

    • Crossref
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, https://doi.org/10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and F. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems. Mon. Wea. Rev., 135, 670688, https://doi.org/10.1175/MWR3314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., G. Bölöni, and U. Achatz, 2019: Efficient modeling of the interaction of mesoscale gravity waves with unbalanced large-scale flows: Pseudomomentum-flux convergence versus direct approach. J. Atmos. Sci., 76, 27152738, https://doi.org/10.1175/JAS-D-18-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, J., 1980: Low-storage Runge–Kutta schemes. J. Comput. Phys., 35, 4856, https://doi.org/10.1016/0021-9991(80)90033-9.

  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, https://doi.org/10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 346 344 10
Full Text Views 118 118 6
PDF Downloads 134 134 7

Toward a Numerical Laboratory for Investigations of Gravity Wave–Mean Flow Interactions in the Atmosphere

View More View Less
  • 1 aInstitut für Atmosphäre und Umwelt, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
  • | 2 bFB Mathematik and Informatik, Freie Universität Berlin, Berlin, Germany
Restricted access

Abstract

Idealized integral studies of the dynamics of atmospheric inertia–gravity waves (IGWs) from their sources in the troposphere (e.g., by spontaneous emission from jets and fronts) to dissipation and mean flow effects at higher altitudes could contribute to a better treatment of these processes in IGW parameterizations in numerical weather prediction and climate simulation. It seems important that numerical codes applied for this purpose are efficient and focus on the essentials. Therefore, a previously published staggered-grid solver for f-plane soundproof pseudoincompressible dynamics is extended here by two main components. These are 1) a semi-implicit time stepping scheme for the integration of buoyancy and Coriolis effects, and 2) the incorporation of Newtonian heating consistent with pseudoincompressible dynamics. This heating function is used to enforce a temperature profile that is baroclinically unstable in the troposphere and it allows the background state to vary in time. Numerical experiments for several benchmarks are compared against a buoyancy/Coriolis-explicit third-order Runge–Kutta scheme, verifying the accuracy and efficiency of the scheme. Preliminary mesoscale simulations with baroclinic wave activity in the troposphere show intensive small-scale wave activity at high altitudes, and they also indicate there the expected reversal of the zonal-mean zonal winds.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Corresponding author: Fabienne Schmid, schmid@iau.uni-frankfurt.de

Abstract

Idealized integral studies of the dynamics of atmospheric inertia–gravity waves (IGWs) from their sources in the troposphere (e.g., by spontaneous emission from jets and fronts) to dissipation and mean flow effects at higher altitudes could contribute to a better treatment of these processes in IGW parameterizations in numerical weather prediction and climate simulation. It seems important that numerical codes applied for this purpose are efficient and focus on the essentials. Therefore, a previously published staggered-grid solver for f-plane soundproof pseudoincompressible dynamics is extended here by two main components. These are 1) a semi-implicit time stepping scheme for the integration of buoyancy and Coriolis effects, and 2) the incorporation of Newtonian heating consistent with pseudoincompressible dynamics. This heating function is used to enforce a temperature profile that is baroclinically unstable in the troposphere and it allows the background state to vary in time. Numerical experiments for several benchmarks are compared against a buoyancy/Coriolis-explicit third-order Runge–Kutta scheme, verifying the accuracy and efficiency of the scheme. Preliminary mesoscale simulations with baroclinic wave activity in the troposphere show intensive small-scale wave activity at high altitudes, and they also indicate there the expected reversal of the zonal-mean zonal winds.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Corresponding author: Fabienne Schmid, schmid@iau.uni-frankfurt.de
Save