• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, https://doi.org/10.1007/s003820100161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagtasa, G., 2017: Contribution of tropical cyclones to rainfall in the Philippines. J. Climate, 30, 36213633, https://doi.org/10.1175/JCLI-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagtasa, G., 2019: Enhancement of summer monsoon rainfall by tropical cyclones in northwestern Philippines. J. Meteor. Soc. Japan, 97, 967976, https://doi.org/10.2151/jmsj.2019-052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagtasa, G., 2020: Influence of Madden–Julian oscillation on the intraseasonal variability of summer and winter monsoon rainfall in the Philippines. J. Climate, 33, 95819594, https://doi.org/10.1175/JCLI-D-20-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergemann, M., C. Jakob, and T. P. Lane, 2015: Global detection and analysis of coastline-associated rainfall using an objective pattern recognition technique. J. Climate, 28, 72257236, https://doi.org/10.1175/JCLI-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., S. Webster, S. C. Peatman, D. J. Parker, A. J. Matthews, Y. Li, and M. E. E. Hassim, 2016: Scale interactions between the MJO and the western Maritime Continent. J. Climate, 29, 24712492, https://doi.org/10.1175/JCLI-D-15-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayanan, E. O., T.-C. Chen, J. C. Argete, M.-C. Yen, and P. D. Nilo, 2011: The effect of tropical cyclones on southwest monsoon rainfall in the Philippines. J. Meteor. Soc. Japan, 89A, 123139, https://doi.org/10.2151/jmsj.2011-A08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 11711194, https://doi.org/10.1256/qj.03.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C.-H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. J. Geophys. Res., 115, D14113, https://doi.org/10.1029/2009JD013389.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and J.-M. Chen, 1993: The 10–20 day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 24652482, https://doi.org/10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and J.-M. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Mon. Wea. Rev., 123, 22952318, https://doi.org/10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., M.-C. Yen, and S.-P. Weng, 2000: Interaction between the summer monsoons in East Asia and the South China Sea: Intraseasonal monsoon modes. J. Atmos. Sci., 57, 13731392, https://doi.org/10.1175/1520-0469(2000)057<1373:IBTSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, and R. Lu, 2016: Evolution of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in southern China. J. Climate, 29, 69096921, https://doi.org/10.1175/JCLI-D-16-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chudler, K., and S. A. Rutledge, 2021: The coupling between convective variability and large-scale flow patterns observed during PISTON 2018–19. J. Climate, 34, 71997218, https://doi.org/10.1175/JCLI-D-20-0785.1.

    • Search Google Scholar
    • Export Citation
  • Chudler, K., W. Xu, and S. A. Rutledge, 2020: Impact of the boreal summer intraseasonal oscillation on the diurnal cycle of precipitation near and over the island of Luzon. Mon. Wea. Rev., 148, 18051827, https://doi.org/10.1175/MWR-D-19-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINTY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 16 February 2021, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Coppin, D., and G. Bellon, 2019: Physical mechanisms controlling the offshore propagation of convection in the tropics: 1. Flat island. J. Adv. Model. Earth Syst., 11, 30423056, https://doi.org/10.1029/2019MS001793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, F. T., and G. T. Narisma, 2013: A climatological analysis of the southwest monsoon rainfall in the Philippines. Atmos. Res., 122, 609616, https://doi.org/10.1016/j.atmosres.2012.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrett, S., G.-Y. Yang, S. J. Woolnough, J. Methven, K. Hodges, and C. E. Holloway, 2019: Linking extreme precipitation in Southeast Asia to equatorial waves. Quart. J. Roy. Meteor. Soc., 146, 665684, https://doi.org/10.1002/qj.3699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, M. K., K. Yoneyama, S. Mori, T. Nasuno, and M. Satoh, 2011: Diurnal convection peaks over the eastern Indian Ocean off Sumatra during different MJO phases. J. Meteor. Soc. Japan, 89A, 317330, https://doi.org/10.2151/jmsj.2011-A22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., J. Yang, B. Wang, and S. Zhou, 2018: How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? Climate Dyn., 51, 44214437, https://doi.org/10.1007/s00382-017-3526-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell Jr., 1963: On the power spectrum of “red noise.” J. Atmos. Sci., 20, 182184, https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, X., H. Zhao, X. Li, G. B. Raga, C. Wang, and Q. Li, 2020: Modulation of boreal extended summer tropical cyclogenesis over the northwest Pacific by the quasi-biweekly oscillation under different El Niño–Southern Oscillation phases. Int. J. Climatol., 40, 858873, https://doi.org/10.1002/joc.6244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassim, M. E. E., T. P. Lane, and W. W. Grabowski, 2016: The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations. Atmos. Chem. Phys., 16, 161175, https://doi.org/10.5194/acp-16-161-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Ho, C.-H., M.-S. Park, Y.-S. Choi, and Y. N. Takayabu, 2008: Relationship between intraseasonal oscillation and diurnal variation of summer rainfall over the South China Sea. Geophys. Res. Lett., 35, L03701, https://doi.org/10.1029/2007GL031962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2010: Temporal relations of column water vapor and tropical precipitation. J. Atmos. Sci., 67, 10911105, https://doi.org/10.1175/2009JAS3284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. G. Geotis, F. D. Marks Jr., and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 15951614, https://doi.org/10.1175/1520-0493(1981)109<1595:WMCITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 06, 35 pp., https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf.

  • Ichikawa, H., and T. Yasunari, 2006: Time-space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19, 12381260, https://doi.org/10.1175/JCLI3714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2008: Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. J. Climate, 21, 28522868, https://doi.org/10.1175/2007JCLI1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, https://doi.org/10.1175/2008JCLI2368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck, 2018: NCDC International Best Track Archive for Climate Stewardship (IBTrACS) project, version 4. NOAA National Centers for Environmental Information, accessed 8 July 2021, https://doi.org/10.25921/82ty-9e16.

    • Crossref
    • Export Citation
  • Ko, K.-C., and H.-H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July–August season. J. Meteor. Soc. Japan, 84, 871889, https://doi.org/10.2151/jmsj.84.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, K.-C., and H.-H. Hsu, 2009: ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western North Pacific. J. Climate, 22, 582599, https://doi.org/10.1175/2008JCLI2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33, 19371954, https://doi.org/10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32, 1526, https://doi.org/10.3402/tellusa.v32i1.10476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., P. K. Jayakumar, J. Sheng, N. Surgi, and A. Kumar, 1985: Divergent circulations on the 30 to 50 day time scale. J. Atmos. Sci., 42, 364375, https://doi.org/10.1175/1520-0469(1985)042<0364:DCOTTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical convection transition statistics and causality in the water vapor-precipitation relation. J. Atmos. Sci., 74, 915931, https://doi.org/10.1175/JAS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40-50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, https://doi.org/10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, https://doi.org/10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K., Y. Yang, L. Feng, W. Yu, and S. Liu, 2020: Structures and northward propagation of the quasi-biweekly oscillation in the western North Pacific. J. Climate, 33, 68736888, https://doi.org/10.1175/JCLI-D-19-0752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Liu, H.-B., J. Yang, D.-L. Zhang, and B. Wang, 2014: Roles of synoptic to quasi-biweekly disturbances in generating the summer 2003 heavy rainfall in east China. Mon. Wea. Rev., 142, 886904, https://doi.org/10.1175/MWR-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, https://doi.org/10.1002/qj.809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., T. Li, and L. Wang, 2019: Precipitation diurnal cycle over the Maritime Continent modulated by the MJO. Climate Dyn., 53, 64896501, https://doi.org/10.1007/s00382-019-04941-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., L. M. P. Olaguera, D. Nguyen-Le, and H. Kubota, 2020: Climatological seasonal changes of wind and rainfall in the Philippines. Int. J. Climatol., 40, 48434857, https://doi.org/10.1002/joc.6492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., J.-I. Hamada, Y. I. Tauhid, and M. D. Yamanaka, 2004: Diurnal land-sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. Lucero, F. Hilario, B. Lyon, A. W. Robertson, and D. DeWitt, 2009: Spatio-temporal variability and predictability of summer monsoon onset over the Philippines. Climate Dyn., 33, 11591177, https://doi.org/10.1007/s00382-008-0520-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Geophysical Data Center, 2006: 2-minute Gridded Global Relief Data (ETOPO2)v2. NOAA, accessed 12 February 2018, https://doi.org/10.7289/V5J1012Q.

    • Crossref
    • Export Citation
  • Natoli, M. B., and E. D. Maloney, 2019: Intraseasonal variability of the diurnal cycle of precipitation in the Philippines. J. Atmos. Sci., 76, 36333654, https://doi.org/10.1175/JAS-D-19-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., K.-Y. Kim, and G.-H. Lim, 2012: Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dyn., 38, 11671180, https://doi.org/10.1007/s00382-011-1237-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohsawa, T., H. Ueda, T. Hayashi, A. Watanabe, and J. Matsumoto, 2001: Diurnal variations of convective activity and rainfall in tropical Asia. J. Meteor. Soc. Japan, 79B, 333352, https://doi.org/10.2151/jmsj.79.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olaguera, L. M. P., J. Matsumoto, H. Kubota, E. O. Cayanan, and F. D. Hilario, 2020: A climatological analysis of the monsoon break following the summer monsoon onset over Luzon Island, Philippines. Int. J. Climatol., 41, 21002117, https://doi.org/10.1002/joc.6949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., C.-H. Ho, J. Kim, and R. L. Elsberry, 2011: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts. Climate Dyn., 37, 14831499, https://doi.org/10.1007/s00382-010-0922-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden-Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., J. Schwendike, C. E. Birch, J. H. Marsham, A. J. Matthews, and G.-Y. Yang, 2021: A local-to-large scale view of Maritime Continent rainfall: Control by ENSO, MJO and equatorial waves. J. Climate, 34, 89338953, https://doi.org/10.1175/JCLI-D-21-0263.1.

    • Search Google Scholar
    • Export Citation
  • Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, https://doi.org/10.1175/2007JAS2422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J. H., 2020: Mechanisms for the dipolar patterns of rainfall variability over large islands in the Maritime Continent associated with the Madden–Julian oscillation. J. Atmos. Sci., 77, 22572278, https://doi.org/10.1175/JAS-D-19-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., P.-C. Hsu, and K. Kikuchi, 2019: New real-time indices for the quasi-biweekly oscillation over the Asian summer monsoon region. Climate Dyn., 53, 26032624, https://doi.org/10.1007/s00382-019-04644-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. E. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325348, https://doi.org/10.1175/2010JCLI3673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley Dellaripa, E. M., E. D. Maloney, B. A. Toms, S. M. Saleeby, and S. C. van den Heever, 2020: Topographic effects on the Luzon diurnal cycle during the BSISO. J. Atmos. Sci., 77, 330, https://doi.org/10.1175/JAS-D-19-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahlu, D., E. I. Nikolopoulos, S. A. Moges, E. N. Anagnostou, and D. Hailu, 2016: First evaluation of the day-1 IMERG over the upper Blue Nile basin. J. Hydrometeor., 17, 28752882, https://doi.org/10.1175/JHM-D-15-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., G. Kiladis, and J. Dias, 2017: The diurnal cycle of tropical cloudiness and rainfall associated with the Madden-Julian oscillation. J. Climate, 30, 39994020, https://doi.org/10.1175/JCLI-D-16-0788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., G. Kiladis, and J. Dias, 2020: The diurnal cycle of rainfall and the convectively coupled equatorial waves over the Maritime Continent. J. Climate, 33, 33073331, https://doi.org/10.1175/JCLI-D-19-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakurai, N., and Coauthors, 2005: Diurnal cycle of cloud system migration over Sumatera Island. J. Meteor. Soc. Japan, 83, 835850, https://doi.org/10.2151/jmsj.83.835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. Nakano, and M. K. Yamamoto, 2017: Role of orography, diurnal cycle, and intraseasonal oscillation in summer monsoon rainfall over the Western Ghats and Myanmar coast. J. Climate, 30, 93659381, https://doi.org/10.1175/JCLI-D-16-0858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Sprintall, E. D. Maloney, Z. K. Martin, S. Wang, S. P. de Szoeke, B. C. Trabing, and S. A. Rutledge, 2021: Large-scale state and evolution of the atmosphere and ocean during PISTON 2018. J. Climate, 34, 50175035, https://doi.org/10.1175/JCLI-D-20-0517.1.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., and K.-M. Lau, 1992: Multiscale phenomena in the tropical atmosphere over the western Pacific. Mon. Wea. Rev., 120, 407430, https://doi.org/10.1175/1520-0493(1992)120<0407:MPITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, H., P. Ray, B. Barrett, J. Dudhia, and M. W. Moncrieff, 2021: Systematic patterns in land precipitation due to convection in neighboring islands in the Maritime Continent during MJO propagation. J. Geophys. Res. Atmos., 126, e2020JD033465, http://dx.doi.org/10.1029/2020JD033465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., X. Fu, and W. Lu, 2009: Moisture structure of the quasi-biweekly mode revealed by AIRS in western Pacific. Adv. Atmos. Sci., 26, 513522, https://doi.org/10.1007/s00376-009-0513-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2016: Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian oscillation event through the Maritime Continent. Mon. Wea. Rev., 144, 19832005, https://doi.org/10.1175/MWR-D-15-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2017: A 10-year austral summer climatology of observed and modeled intraseasonal, mesoscale, and diurnal variations over the Maritime Continent. J. Climate, 30, 38073828, https://doi.org/10.1175/JCLI-D-16-0688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Diurnal lightning variability over the Maritime Continent: Impact of low-level winds, cloudiness, and the MJO. J. Atmos. Sci., 70, 31283146, https://doi.org/10.1175/JAS-D-13-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2017: Factors controlling rain on small tropical islands: Diurnal cycle, large-scale wind speed, and topography. J. Atmos. Sci., 74, 35153532, https://doi.org/10.1175/JAS-D-16-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., M. Hara, J.-I. Hamada, M. D. Yamanaka, and F. Kimura, 2009: Why a large amount of rain falls over the vicinity of western Sumatra Island during nighttime. J. Appl. Meteor. Climatol., 48, 13451361, https://doi.org/10.1175/2009JAMC2052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., D. Ardiansyah, S. Yokoi, S. Mori, F. Syamsudin, and K. Yoneyama, 2017: Why torrential rain occurs on the western coast of Sumatra island at the leading edge of the MJO westerly wind bursts. SOLA, 13, 3640, https://doi.org/10.2151/sola.2017-007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., S. Mori, and F. Syamsudin, 2018: Land-sea surface air temperature contrast on the western coast of Sumatra island during an active phase of the Madden-Julian Oscillation. Prog. Earth Planet. Sci., 5, 4, https://doi.org/10.1186/s40645-017-0160-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2018: Convective variability associated with the boreal summer intraseasonal oscillation in the South China Sea region. J. Climate, 31, 73637383, https://doi.org/10.1175/JCLI-D-18-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., S. A. Rutledge, and K. Chudler, 2021: Diurnal cycle of coastal convection in the South China Sea region and modulation by the BSISO. J. Climate, 34, 42974314, https://doi.org/10.1175/JCLI-D-20-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X., S. Yang, T. Wang, E. D. Maloney, S. Dong, W. Wei, and S. He, 2019: Quasi-biweekly oscillation of the Asian monsoon rainfall in late summer and autumn: different types of structure and propagation. Climate Dyn., 53, 66116628, https://doi.org/10.1007/s00382-019-04946-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, A., K. Yasunaga, and H. Masunaga, 2017: Relationship between the direction of diurnal rainfall migration and the ambient wind over the southern Sumatra Island. Earth Space Sci., 4, 117127, https://doi.org/10.1002/2016EA000181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., B. Wang, and B. Wang, 2008: Anticorrelated intensity change of the quasi-biweekly and 30–50-day oscillations over the South China Sea. Geophys. Res. Lett., 35, L16702, https://doi.org/10.1029/2008GL034449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yusef, A. A., and H. Francisco, 2009: Climate change vulnerability mapping for Southeast Asia. EEPSEA Special and Tech. Paper tp200901s1, Economy and Environment Program for Southeast Asia, 32 pp., https://ideas.repec.org/p/eep/tpaper/tp200901s1.html.

  • Zhou, H., P.-C. Hsu, and Y. Qian, 2018: Close linkage between quasi-biweekly oscillation and tropical cyclone intensification over the western north pacific. Atmos. Sci. Lett., 19, e826, https://doi.org/10.1002/asl.826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., Z. Meng, F. Zhang, and P. M. Markowski, 2017: The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island. Atmos. Chem. Phys., 17, 13 21313 232, https://doi.org/10.5194/acp-17-13213-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 99 99 38
Full Text Views 56 56 23
PDF Downloads 56 56 21

Quasi-Biweekly Extensions of the Monsoon Winds and the Philippines Diurnal Cycle

View More View Less
  • 1 a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 data, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-yr composite analysis are used to understand the effect of the quasi-biweekly oscillation (QBWO) on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches maximum amplitude on the western side of the Philippines on days with average to above-average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO. Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local-scale environmental background state similarly.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael B. Natoli, mbnatoli@colostate.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex special collection.

Abstract

The impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 data, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-yr composite analysis are used to understand the effect of the quasi-biweekly oscillation (QBWO) on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches maximum amplitude on the western side of the Philippines on days with average to above-average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO. Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local-scale environmental background state similarly.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael B. Natoli, mbnatoli@colostate.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex special collection.

Save