• Anderson, J., and L. Lei, 2013: Empirical localization of observation impact in ensemble Kalman filters. Mon. Wea. Rev., 141, 41404153, https://doi.org/10.1175/MWR-D-12-00330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111, https://doi.org/10.1111/j.1600-0870.2008.00372.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. Da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, https://doi.org/10.1256/qj.04.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2012: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Wea. Rev., 140, 617636, https://doi.org/10.1175/MWR-D-10-05052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and M. Charron, 2007: Spectral and spatial localization of background-error correlations for data assimilation. Quart. J. Roy. Meteor. Soc., 133, 615630, https://doi.org/10.1002/qj.50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and A. Shlyaeva, 2015: Scale-dependent background-error covariance localisation. Tellus, 67A, 28027, https://doi.org/10.3402/tellusa.v67.28027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, https://doi.org/10.5194/npg-20-669-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and et al. , 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J. F., and M. Buehner, 2018: Scale-dependent background error covariance localization: Evaluation in a global deterministic weather forecasting system. Mon. Wea. Rev., 146, 13671381, https://doi.org/10.1175/MWR-D-17-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J. F., Y. Michel, T. Montmerle, and É. Arbogast, 2019: Improving background error covariances in a 3D ensemble-variational data assimilation system for regional NWP. Mon. Wea. Rev., 147, 135151, https://doi.org/10.1175/MWR-D-18-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. H., and et al. , 2019: Advancements in hurricane prediction with NOAA’s next-generation forecast system. Geophys. Res. Lett., 46, 44954501, https://doi.org/10.1029/2019GL082410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, https://doi.org/10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 13331347, https://doi.org/10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasperoni, N. A., and X. Wang, 2015: Adaptive localization for the ensemble-based observation impact estimate using regression confidence factors. Mon. Wea. Rev., 143, 19812000, https://doi.org/10.1175/MWR-D-14-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522, https://doi.org/10.1175/2010MWR3328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., J. Bojarova, and O. Vignes, 2014: A hybrid variational ensemble data assimilation for the High Resolution Limited Area Model (HIRLAM). Nonlinear Processes Geophys., 21, 303323, https://doi.org/10.5194/npg-21-303-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, B., and X. Wang, 2013: Effects of sequential or simultaneous assimilation of observations and localization methods on the performance of the ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 139, 758770, https://doi.org/10.1002/qj.2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, https://doi.org/10.1256/qj.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and X. Wang, 2018: On the use of cost-effective Valid-Time-Shifting (VTS) method to increase ensemble size in the GFS hybrid 4DEnVar system. Mon. Wea. Rev., 146, 29732998, https://doi.org/10.1175/MWR-D-18-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., X. Wang, and C. H. Bishop, 2019: The high-rank ensemble transform Kalman filter. Mon. Wea. Rev., 147, 30253043, https://doi.org/10.1175/MWR-D-18-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JCSDA, 2018: Data assimilation in the next generation global prediction system (NGGPS) Era: Initial implementation of FV3-based Global Forecast System (GFS). JCSDA, 34 pp., https://www.jcsda.org/s/2018_04JCSDAQuarterly.pdf.

  • Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, https://doi.org/10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015b: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, https://doi.org/10.1175/MWR-D-13-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutty, G., and X. Wang, 2015: A comparison of the impacts of radiosonde and AMSU radiance observations in GSI based 3DEnsVar and 3DVar data assimilation systems for NCEP GFS. Adv. Meteor., 2015, 117, https://doi.org/10.1155/2015/280546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26052621, https://doi.org/10.1175/MWR-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2017: Evaluating the trade-offs between ensemble size and ensemble resolution in an ensemble-variational data assimilation system. J. Adv. Model. Earth Syst., 9, 781789, https://doi.org/10.1002/2016MS000864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, https://doi.org/10.1256/qj.02.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2017: Improving ensemble covariances in hybrid variational data assimilation without increasing ensemble size. Quart. J. Roy. Meteor. Soc., 143, 10621072, https://doi.org/10.1002/qj.2990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, https://doi.org/10.1175/MWR-D-14-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manly, B. F. J., 2006: Randomization, Bootstrap and Monte Carlo Methods in Biology. Vol. 70, CRC Press, 480 pp.

  • Marchok, T., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13, http://ams.confex.com/ams/pdfpapers/37628.pdf.

  • Ménétrier, B., T. Montmerle, Y. Michel, and L. Berre, 2015: Linear filtering of sample covariances for ensemble-based data assimilation. Part I: Optimality criteria and application to variance filtering and covariance localization. Mon. Wea. Rev., 143, 16221643, https://doi.org/10.1175/MWR-D-14-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and K. Kondo, 2013: A multi-scale localization approach to an ensemble Kalman filter. SOLA, 9, 170173, https://doi.org/10.2151/sola.2013-038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., K. Kondo, and T. Imamura, 2014: The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 52645271, https://doi.org/10.1002/2014GL060863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 44 pp., https://doi.org/10.21957/ps8gbwbdv.

    • Crossref
    • Export Citation
  • Pan, Y., K. Zhu, M. Xue, X. Wang, M. Hu, S. G. Benjamin, S. S. Weygandt, and J. S. Whitaker, 2014: A GSI-based coupled EnSRF–En3DVar hybrid data assimilation system for the operational rapid refresh model: Tests at a reduced resolution. Mon. Wea. Rev., 142, 37563780, https://doi.org/10.1175/MWR-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Dool, H. M., and L. Rukhovets, 1994: On the weights for an ensemble-averaged 6–10-day forecast. Wea. Forecasting, 9, 457465, https://doi.org/10.1175/1520-0434(1994)009<0457:OTWFAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2011: Application of the WRF hybrid ETKF–3DVAR data assimilation system for hurricane track forecasts. Wea. Forecasting, 26, 868884, https://doi.org/10.1175/WAF-D-10-05058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2005: Improvement of ensemble reliability with a new dressing kernel. Quart. J. Roy. Meteor. Soc., 131, 965986, https://doi.org/10.1256/qj.04.120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP global forecast system. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2007a: A comparison of hybrid ensemble transform Kalman filter–optimum interpolation and ensemble square root filter analysis schemes. Mon. Wea. Rev., 135, 10551076, https://doi.org/10.1175/MWR3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Snyder, and T. M. Hamill, 2007b: On the theoretical equivalence of differently proposed ensemble–3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222227, https://doi.org/10.1175/MWR3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observation system simulation experiment. Mon. Wea. Rev., 136, 51165131, https://doi.org/10.1175/2008MWR2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, https://doi.org/10.1175/2008MWR2445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., H. G. Chipilski, C. H. Bishop, E. Satterfield, N. Baker, and J. S. Whitaker, 2021: A multiscale local gain form ensemble transform Kalman filter (MLGETKF). Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-20-0290.1, in press.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, https://doi.org/10.1175/JAM2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., J. A. Jung, J. F. Le Marshall, R. E. Treadon, T. H. Zapotocny, J. A. Jung, J. F. Le Marshall, and R. E. Treadon, 2008: A two-season impact study of four satellite data types and rawinsonde data in the NCEP global data assimilation system. Wea. Forecasting, 23, 80100, https://doi.org/10.1175/2007WAF2007010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, https://doi.org/10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective-scale prediction within the next generation global prediction system. Bull. Amer. Meteor. Soc., 100, 12251243, https://doi.org/10.1175/BAMS-D-17-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s gridpoint statistical interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, https://doi.org/10.1002/qj.2233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zong, H., and L. Wu, 2015: Synoptic-scale influences on tropical cyclone formation within the western North Pacific monsoon trough. Mon. Wea. Rev., 143, 34213433, https://doi.org/10.1175/MWR-D-14-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 197 197 31
Full Text Views 76 76 2
PDF Downloads 98 98 3

A Simultaneous Multiscale Data Assimilation Using Scale-Dependent Localization in GSI-Based Hybrid 4DEnVar for NCEP FV3-Based GFS

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 NOAA/Environmental Modeling Center, College Park, Maryland
  • | 3 IMSG, NOAA/Environmental Modeling Center, College Park, Maryland
© Get Permissions
Restricted access

Abstract

A scale-dependent localization (SDL) method was formulated and implemented in the Gridpoint Statistical Interpolation (GSI)-based four-dimensional ensemble-variational (4DEnVar) system for NCEP FV3-based Global Forecast System (GFS). SDL applies different localization to different scales of ensemble covariances, while performing a single-step simultaneous assimilation of all available observations. Two SDL variants with (SDL-Cross) and without (SDL-NoCross) considering cross-wave-band covariances were examined. The performance of two- and three-wave-band SDL experiments (W2 and W3, respectively) was evaluated through 1-month cycled data assimilation experiments. SDL improves global forecasts to 5 days over scale-invariant localization including the operationally tuned level-dependent scale-invariant localization (W1-Ope). The W3 SDL-Cross experiment shows more accurate tropical storm–track forecasts at shorter lead times than W1-Ope. Compared to the W2 SDL experiments, the W3 SDL counterparts applying tighter horizontal localization at medium-scale wave band generally show improved global forecasts below 100 hPa, but degraded global forecasts above 50 hPa. While the outperformance of the W3 SDL-NoCross experiment versus the W2 SDL-NoCross experiment below 100 hPa lasts for 5 days, that of the W3 SDL-Cross experiment versus the W2 SDL-Cross experiment lasts for 3 days. Due to local spatial averaging of ensemble covariances that may alleviate sampling error, the SDL-NoCross experiments show slightly better forecasts than the SDL-Cross experiments at shorter lead times. However, the SDL-Cross experiments outperform the SDL-NoCross experiments at longer lead times, likely from retention of more heterogeneity of ensemble covariances and resultant analyses with improved balance. Relative performance of tropical storm–track forecasts in the W2 and W3 SDL experiments are generally consistent with that of global forecasts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

Abstract

A scale-dependent localization (SDL) method was formulated and implemented in the Gridpoint Statistical Interpolation (GSI)-based four-dimensional ensemble-variational (4DEnVar) system for NCEP FV3-based Global Forecast System (GFS). SDL applies different localization to different scales of ensemble covariances, while performing a single-step simultaneous assimilation of all available observations. Two SDL variants with (SDL-Cross) and without (SDL-NoCross) considering cross-wave-band covariances were examined. The performance of two- and three-wave-band SDL experiments (W2 and W3, respectively) was evaluated through 1-month cycled data assimilation experiments. SDL improves global forecasts to 5 days over scale-invariant localization including the operationally tuned level-dependent scale-invariant localization (W1-Ope). The W3 SDL-Cross experiment shows more accurate tropical storm–track forecasts at shorter lead times than W1-Ope. Compared to the W2 SDL experiments, the W3 SDL counterparts applying tighter horizontal localization at medium-scale wave band generally show improved global forecasts below 100 hPa, but degraded global forecasts above 50 hPa. While the outperformance of the W3 SDL-NoCross experiment versus the W2 SDL-NoCross experiment below 100 hPa lasts for 5 days, that of the W3 SDL-Cross experiment versus the W2 SDL-Cross experiment lasts for 3 days. Due to local spatial averaging of ensemble covariances that may alleviate sampling error, the SDL-NoCross experiments show slightly better forecasts than the SDL-Cross experiments at shorter lead times. However, the SDL-Cross experiments outperform the SDL-NoCross experiments at longer lead times, likely from retention of more heterogeneity of ensemble covariances and resultant analyses with improved balance. Relative performance of tropical storm–track forecasts in the W2 and W3 SDL experiments are generally consistent with that of global forecasts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu
Save