• Agosta, C., V. Favier, G. Krinner, H. Gallee, X. Fettweis, and C. Genthon, 2013: High-resolution modeling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Climate Dyn., 41, 32473260, https://doi.org/10.1007/s00382-013-1903-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, https://doi.org/10.1175/2008MWR2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, https://doi.org/10.1111/j.1600-0870.2006.00216.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313334, https://doi.org/10.1175/BAMS-89-3-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., and C. M. Bitz, 2015: Observed and projected trends in Antarctic sea ice. U.S. CLIVAR Variations, No. 13, International CLIVAR Project Office, Southampton, United Kingdom, 12–18, https://atmos.uw.edu/~bitz/Armour_Bitz_2015_SOCN_CLIVARnews.pdf.

  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, https://doi.org/10.1029/2009JD013470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., and T. Jung, 2016: Editorial for the quarterly journal’s special issue on polar prediction. Quart. J. Roy. Meteor. Soc., 142, 537538, https://doi.org/10.1002/qj.2639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., L. Magnusson, J.-N. Thépaut, and T. M. Hamill, 2016: Aspects of ECMWF model performance in polar areas. Quart. J. Roy. Meteor. Soc., 142, 583596, https://doi.org/10.1002/qj.2449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., C. Severijns, R. Haarsma, and W. Hazeleger, 2014a: The future of Antarctica’s surface winds simulated by a high-resolution global climate model: 1. Model description and validation. J. Geophys. Res. Atmos., 119, 71367159, https://doi.org/10.1002/2013JD020847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., C. Severijns, R. Haarsma, and W. Hazeleger, 2014b: The future of Antarctica’s surface winds simulated by a high-resolution global climate model: 2. Drivers of 21st century changes. J. Geophys. Res. Atmos., 119, 71607178, https://doi.org/10.1002/2013JD020848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchard, A., F. Rabier, V. Guidard, and F. Karbou, 2010: Enhancements of satellite data assimilation over Antarctica. Mon. Wea. Rev., 138, 21492173, https://doi.org/10.1175/2009MWR3071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boullot, N., F. Rabier, R. Langland, R. Gelaro, C. Cardinali, V. Guidard, P. Bauer, and A. Doerenbecher, 2016: Observation impact over the southern polar area during the Concordiasi field campaign. Quart. J. Roy. Meteor. Soc., 142, 597610, https://doi.org/10.1002/qj.2470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boylan, P., J. Wang, S. A. Cohn, E. Fetzer, E. S. Maddy, and S. Wong, 2015: Validation of AIRS version 6 temperature profiles and surface-based inversions over Antarctica using Concordiasi dropsonde data. J. Geophys. Res. Atmos., 120, 9921007, https://doi.org/10.1002/2014JD022551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Z. Liu, 1996: An observational study of the katabatic wind confluence zone near Siple Coast, West Antarctica. Mon. Wea. Rev., 124, 462477, https://doi.org/10.1175/1520-0493(1996)124<0462:AOSOTK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. J. Monaghan, J. G. Powers, J. J. Cassano, H.-L. Wei, Y.-H. Kuo, and A. Pellegrini, 2003: Antarctic mesoscale prediction system (AMPS): A case study from the 2000-01 field season. Mon. Wea. Rev., 131, 412434, https://doi.org/10.1175/1520-0493(2003)131<0412:AMPSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. J. Monaghan, K. W. Manning, and J. G. Powers, 2005: Real-time forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133, 579603, https://doi.org/10.1175/MWR-2881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and testing of polar weather research and forecasting model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, https://doi.org/10.1029/2008JD010300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013: Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res. Atmos., 118, 274292, https://doi.org/10.1029/2012JD018139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, https://doi.org/10.1175/2009MWR3157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, https://doi.org/10.1175/2009MWR3158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bumbaco, K. A., G. J. Hakim, G. S. Mauger, N. Hryniw, and E. J. Steig, 2014: Evaluating the Antarctic observational network with the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 142, 38473859, https://doi.org/10.1175/MWR-D-13-00401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., J. E. Box, D. H. Bromwich, L. Li, and K. Steffen, 2001: Evaluation of polar MM5 simulations of Greenland’s atmospheric circulation. J. Geophys. Res., 106, 33 86733 889, https://doi.org/10.1029/2001JD900044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 2012: Arctic sea ice variability and trends, 1979-2010. Cryosphere, 6, 881889, https://doi.org/10.5194/tc-6-881-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., R. D. Torn, C. Snyder, C. Davis, W. Wang, and J. Done, 2013: Evaluation of the advanced hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Wea. Rev., 141, 523541, https://doi.org/10.1175/MWR-D-12-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., J. Berner, and C. Snyder, 2016: Diagnosing model errors from time-averaged tendencies in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 759779, https://doi.org/10.1175/MWR-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: A synthesis of Antarctic temperatures. J. Climate, 20, 40964117, https://doi.org/10.1175/JCLI4236.1.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. Tech. Memo. NASA/TM-1994-104606, Vol. 3, 85 pp.

  • Collard, A., and A. McNally, 2009: The assimilation of infrared atmospheric sounding interferometer radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 10441058, https://doi.org/10.1002/qj.410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. Derber, R. Treadon, and R. Purser, 2007: Assimilation of global positioning system radio occultation observations into NCEP’s global data assimilation system. Mon. Wea. Rev., 135, 31743193, https://doi.org/10.1175/MWR3461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., T. C. Hill, and G. McFarquhar, 2018: Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) ice nucleating particle measurements field campaign report. Tech. Rep. DOE/SC-ARM-18-031, 12 pp., https://www.osti.gov/servlets/purl/1489372.

  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, https://doi.org/10.1038/ngeo1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, P. T., C. P. McKay, G. D. Clow, G. L. Dana, A. G. Fountain, T. Nylen, and W. B. Lyons, 2002: Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J. Geophys. Res., 107, 4772, https://doi.org/10.1029/2001JD002045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., I. A. Renfrew, J. C. King, A. Orr, T. A. Lachlan-Cope, M. Weeks, and S. L. Gray, 2015: Foehn jets over the Larsen C ice shelf, Antarctica. Quart. J. Roy. Meteor. Soc., 141, 698713, https://doi.org/10.1002/qj.2382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., I. A. Renfrew, J. C. King, A. Orr, and T. A. Lachlan-Cope, 2016: Foehn warming distributions in nonlinear and linear flow regimes: A focus on the Antarctic Peninsula. Quart. J. Roy. Meteor. Soc., 142, 618631, https://doi.org/10.1002/qj.2489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eresmaa, R., J. Letertre-Danczak, C. Lupu, N. Bormann, and A. P. McNally, 2017: The assimilation of cross-track infrared sounder radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 143, 31773188, https://doi.org/10.1002/qj.3171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal Clox/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., M. Abaza, F. Anctil, and R. Turcotte, 2014: Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeor., 15, 17081713, https://doi.org/10.1175/JHM-D-14-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmill, W., B. Katz, and X. Li, 2007: Daily real-time global sea surface temperature-high resolution analysis at NOAA/NCEP. NCEP Office Note 260, 39 pp.

  • Hakim, G. J., K. A. Bumbaco, R. Tardif, and J. G. Powers, 2020: Optimal network design applied to monitoring and forecasting surface temperature in Antarctica. Mon. Wea. Rev., 148, 857873, https://doi.org/10.1175/MWR-D-19-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S., and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605623, https://doi.org/10.1256/qj.04.182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., and D. H. Bromwich, 2008: Development and testing of polar Weather Research And Forecasting (WRF) Model. Part I: Greenland ice sheet meteorology. Mon. Wea. Rev., 136, 19711989, https://doi.org/10.1175/2007MWR2112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., and D. H. Bromwich, 2017: Simulation of late summer Arctic clouds during ASCOS with Polar WRF. Mon. Wea. Rev., 145, 521541, https://doi.org/10.1175/MWR-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L.-S. Bai, M. Barlage, and A. G. Slater, 2011: Development and testing of polar WRF. Part III: Arctic land. J. Climate, 24, 2648, https://doi.org/10.1175/2010JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L. Bai, C. M. Bitz, J. G. Powers, and K. W. Manning, 2015: Sea ice enhancements to Polar WRF. Mon. Wea. Rev., 143, 23632385, https://doi.org/10.1175/MWR-D-14-00344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, S.-H. Wang, I. Silber, J. Verlinde, and D. Lubin, 2019: Microphysics of summer clouds in central West Antarctica simulated by the polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS). Atmos. Chem. Phys., 19, 12 43112 454, https://doi.org/10.5194/acp-19-12431-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., N. L. Bindoff, and M. N. Raphael, 2015: New perspectives on observed and simulated Antarctic sea ice extent trends using optimal fingerprinting techniques. J. Climate, 28, 15431560, https://doi.org/10.1175/JCLI-D-14-00367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., M. C. Serreze, and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dyn., 34, 185200, https://doi.org/10.1007/s00382-008-0493-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and N. Kimura, 2016: Observed concentration budgets of Arctic and Antarctic sea ice. J. Climate, 29, 52415249, https://doi.org/10.1175/JCLI-D-16-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, https://doi.org/10.1175/JCLI-D-12-00813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. Cambridge University Press, 151 pp.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, https://doi.org/10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judd, K., C. A. Reynolds, T. E. Rosmond, and L. A. Smith, 2008: The geometry of model error. J. Atmos. Sci., 65, 17491772, https://doi.org/10.1175/2007JAS2327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., and M. Matsueda, 2016: Verification of global numerical weather forecasting systems in polar regions using TIGGE data. Quart. J. Roy. Meteor. Soc., 142, 574582, https://doi.org/10.1002/qj.2437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2016: Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Amer. Meteor. Soc., 97, 16311647, https://doi.org/10.1175/BAMS-D-14-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Fluids Eng., 82, 3545, https://doi.org/10.1115/1.3662552.

    • Search Google Scholar
    • Export Citation
  • King, J., and Coauthors, 2015: Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. J. Geophys. Res. Atmos., 120, 13351347, https://doi.org/10.1002/2014JD022604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchgaessner, A., J. King, and A. Gadian, 2019: The representation of Föhn events to the east of the Antarctic Peninsula in simulations by the Antarctic Mesoscale Prediction System (AMPS). J. Geophys. Res. Atmos., 124, 13 66313 679, https://doi.org/10.1029/2019JD030637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocke, D., and M. Rodwell, 2014: A comparison of two numerical weather prediction methods for diagnosing fast-physics errors in climate models. Quart. J. Roy. Meteor. Soc., 140, 517524, https://doi.org/10.1002/qj.2172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic automatic weather station program: 30 years of polar observation. Bull. Amer. Meteor. Soc., 93, 15191537, https://doi.org/10.1175/BAMS-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, K., and N. Bormann, 2018: Indian Ocean AMVs: Moving to Meteosat-8 and assessing alternative options. EUMETSAT/ECMWF Fellowship Program Research Rep. 46, 38 pp.

  • Lenaerts, J. T., M. R. Van Den Broeke, C. Scarchilli, and C. Agosta, 2012: Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica. J. Glaciol., 58, 821829, https://doi.org/10.3189/2012JoG12J020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Q. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with advanced research WRF using real data. Mon. Wea. Rev., 141, 27212739, https://doi.org/10.1175/MWR-D-12-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, https://doi.org/10.1175/JAS-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A., P. Watts, J. Smith, R. Engelen, G. Kelly, J. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935957, https://doi.org/10.1256/qj.04.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. H. Bromwich, H.-L. Wei, A. M. Cayette, J. G. Powers, Y.-H. Kuo, and M. A. Lazzara, 2003: Performance of weather forecast models in the rescue of Dr. Ronald Shemenski from the South Pole in April 2001. Wea. Forecasting, 18, 142160, https://doi.org/10.1175/1520-0434(2003)018<0142:POWFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR/UCAR/EOF, 2020: SOCRATES Project overview. Accessed 1 May 2020, https://www.eol.ucar.edu/content/socrates-project-overview.

  • Nigro, M. A., J. J. Cassano, and S. L. Knuth, 2012a: Evaluation of Antarctic Mesoscale Prediction System (AMPS) cyclone forecasts using infrared satellite imagery. Antarct. Sci., 24, 183192, https://doi.org/10.1017/S0954102011000745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., J. J. Cassano, M. A. Lazzara, and L. M. Keller, 2012b: Case study of a barrier wind corner jet off the coast of the Prince Olav Mountains, Antarctica. Mon. Wea. Rev., 140, 20442063, https://doi.org/10.1175/MWR-D-11-00261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolin, A., R. Armstrong, and J. Maslanik, 1998: Near-real-time SSM/I-SSMIS EASE-Grid daily global ice concentration and snow extent, version 4. NASA National Snow and Ice Data Center, accessed 1 September 2015, https://doi.org/10.5067/VF7QO90IHZ99.

    • Crossref
    • Export Citation
  • Palmer, T., G. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and K. T. Waight III, 1987: The forcing of Antarctic katabatic winds. Mon. Wea. Rev., 115, 22142226, https://doi.org/10.1175/1520-0493(1987)115<2214:TFOAKW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., S. Healy, and D. Dee, 2010: Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990, https://doi.org/10.1002/qj.722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., 2007: Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 135, 31343157, https://doi.org/10.1175/MWR3459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y.-H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System. Bull. Amer. Meteor. Soc., 84, 15331546, https://doi.org/10.1175/BAMS-84-11-1533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, https://doi.org/10.1175/BAMS-D-11-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., and Coauthors, 2010: The CONCORDIASI project in Antarctica. Bull. Amer. Meteor. Soc., 91, 6986, https://doi.org/10.1175/2009BAMS2764.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., and Coauthors, 2013: The Concordiasi field experiment over Antarctica: First results from innovative atmospheric measurements. Bull. Amer. Meteor. Soc., 94, ES17ES20, https://doi.org/10.1175/BAMS-D-12-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raeder, K., J. L. Anderson, N. Collins, T. J. Hoar, J. E. Kay, P. H. Lauritzen, and R. Pincus, 2012: DART/CAM: An ensemble data assimilation system for CESM atmospheric models. J. Climate, 25, 63046317, https://doi.org/10.1175/JCLI-D-11-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rani, S. I., and M. Das Gupta, 2014: An inter-comparison of Kalpana-1 and Meteosat-7 atmospheric motion vectors against radiosonde winds and NWP forecasts during monsoon 2011. Meteor. Appl., 21, 820830, https://doi.org/10.1002/met.1411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. Rasmussen, and R. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and R. H. Thomas, 2002: Mass balance of polar ice sheets. Science, 297, 15021506, https://doi.org/10.1126/science.1073888.

  • Rodrigo, J. S., J.-M. Buchlin, J. van Beeck, J. T. Lenaerts, and M. R. van den Broeke, 2013: Evaluation of the Antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Climate Dyn., 40, 353376, https://doi.org/10.1007/s00382-012-1396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M., and T. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146, https://doi.org/10.1002/qj.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J., 2014: Evaluation of the Antarctic Mesoscale Prediction System using the CONCORDIASI dataset. M.S. thesis, School of Meteorology, University of Oklahoma, 96 pp.

  • Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst., 5, 117133, https://doi.org/10.1002/jame.20013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, S. P. Alexander, G. McFarquhar, and A. Yamazaki, 2018: Improved reanalysis and prediction of atmospheric fields over the Southern Ocean using campaign-based radiosonde observations. Geophys. Res. Lett., 45, 11 40611 413, https://doi.org/10.1029/2018GL079037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seefeldt, M. W., and J. J. Cassano, 2012: A description of the Ross Ice Shelf air stream (RAS) through the use of self-organizing maps (SOMs). J. Geophys. Res., 117, D09112, https://doi.org/10.1029/2011JD016857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silber, I., J. Verlinde, S.-H. Wang, D. H. Bromwich, A. M. Fridlind, M. Cadeddu, E. W. Eloranta, and C. J. Flynn, 2019: Cloud influence on ERA5 and AMPS surface downwelling longwave radiation biases in West Antarctica. J. Climate, 32, 79357949, https://doi.org/10.1175/JCLI-D-19-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128, 647677, https://doi.org/10.1256/003590002321042135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Steinhoff, D. F., 2011: Dynamics and variability of Foehn winds in the McMurdo Dry Valleys Antarctica. Ph.D. thesis, The Ohio State University, 271 pp.

  • Steinhoff, D. F., D. H. Bromwich, J. C. Speirs, H. A. McGowan, and A. J. Monaghan, 2014: Austral summer foehn winds over the McMurdo dry valleys of Antarctica from Polar WRF. Quart. J. Roy. Meteor. Soc., 140, 18251837, https://doi.org/10.1002/qj.2278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tastula, E.-M., and T. Vihma, 2011: WRF Model experiments on the Antarctic atmosphere in winter. Mon. Wea. Rev., 139, 12791291, https://doi.org/10.1175/2010MWR3478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 43754392, https://doi.org/10.1175/2010MWR3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013a: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, https://doi.org/10.1175/JCLI-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013b: The Amundsen sea low. Int. J. Climatol., 33, 18181829, https://doi.org/10.1002/joc.3558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., J. S. Hosking, T. J. Bracegirdle, G. J. Marshall, and T. Phillips, 2015: Recent changes in Antarctic sea ice. Philos. Trans. Roy. Soc. London, 373A, 20140163, https://doi.org/10.1098/rsta.2014.0163.

    • Search Google Scholar
    • Export Citation
  • Turner, J., G. J. Marshall, K. Clem, S. Colwell, T. Phillips, and H. Lu, 2020: Antarctic temperature variability and change from station data. Int. J. Climatol., 40, 29863007, https://doi.org/10.1002/joc.6378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzeng, R.-Y., D. H. Bromwich, T. R. Parish, and B. Chen, 1994: NCAR CCM2 simulation of the modern Antarctic climate. J. Geophys. Res., 99, 23 13123 148, https://doi.org/10.1029/94JD02156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uotila, P., T. Vihma, A. Pezza, I. Simmonds, K. Keay, and A. Lynch, 2011: Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. J. Geophys. Res., 116, D07109, https://doi.org/10.1029/2010JD015358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., and Coauthors, 2003: Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243274, https://doi.org/10.1023/A:1026021217991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., T. Hock, S. A. Cohn, C. Martin, N. Potts, T. Reale, B. Sun, and F. Tilley, 2013: Unprecedented upper-air dropsonde observations over Antarctica from the 2010 Concordiasi Experiment: Validation of satellite-retrieved temperature profiles. Geophys. Res. Lett., 40, 12311236, https://doi.org/10.1002/grl.50246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ware, R., and Coauthors, 1996: GPS sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 1940, https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 11901200, https://doi.org/10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wille, J. D., D. H. Bromwich, M. A. Nigro, J. J. Cassano, M. Mateling, M. A. Lazzara, and S.-H. Wang, 2016: Evaluation of the AMPS boundary layer simulations on the Ross Ice Shelf with tower observations. J. Appl. Meteor. Climatol., 55, 23492367, https://doi.org/10.1175/JAMC-D-16-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 101 101 23
Full Text Views 30 30 6
PDF Downloads 55 55 22

Mesoscale Prediction in the Antarctic Using Cycled Ensemble Data Assimilation

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Due in part to sparse conventional observation coverage in the Antarctic region, atmospheric studies in this part of the globe often rely more heavily on numerical models. Model representation of atmospheric processes in the Antarctic remains inferior to representation in the Northern Hemisphere midlatitudes. Poor representation may be related to inaccurate model analyses that do not optimally utilize the limited observation network. Here, the ensemble Kalman filter (EnKF) data assimilation (DA) technique is employed in lieu of variational DA techniques to investigate impacts on model analysis accuracy. This DA technique [provided by the Data Assimilation Research Testbed (DART)] is coupled with a polar-modified, mesoscale numerical model that together compose Antarctic-DART (A-DART). A-DART is cycled with DA and run over a 1-month period, assimilating only conventional observations. Results show relatively good agreement between A-DART and observations. Comparison with radiosonde temperature and geostationary satellite wind observations shows large differences between RMSE and ensemble spread in the upper troposphere. The analysis increment shows large values in the eastern Atlantic–western Indian Oceans associated with geostationary satellite wind observations. Further evaluation determines that geostationary satellite wind observations may be biased in this region. Overall, this baseline demonstration of ensemble-based modeling applied in the Antarctic produced short-term forecasts that were competitive with two operational modeling systems while assimilating on the O(106) fewer observations. A-DART is capable of assimilating additional observations for a variety of applications. This study highlights the capability of applying this ensemble-based DA technique for process and forecast studies in an observation-sparse region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher Riedel, christopher.p.riedel-1@ou.edu

Abstract

Due in part to sparse conventional observation coverage in the Antarctic region, atmospheric studies in this part of the globe often rely more heavily on numerical models. Model representation of atmospheric processes in the Antarctic remains inferior to representation in the Northern Hemisphere midlatitudes. Poor representation may be related to inaccurate model analyses that do not optimally utilize the limited observation network. Here, the ensemble Kalman filter (EnKF) data assimilation (DA) technique is employed in lieu of variational DA techniques to investigate impacts on model analysis accuracy. This DA technique [provided by the Data Assimilation Research Testbed (DART)] is coupled with a polar-modified, mesoscale numerical model that together compose Antarctic-DART (A-DART). A-DART is cycled with DA and run over a 1-month period, assimilating only conventional observations. Results show relatively good agreement between A-DART and observations. Comparison with radiosonde temperature and geostationary satellite wind observations shows large differences between RMSE and ensemble spread in the upper troposphere. The analysis increment shows large values in the eastern Atlantic–western Indian Oceans associated with geostationary satellite wind observations. Further evaluation determines that geostationary satellite wind observations may be biased in this region. Overall, this baseline demonstration of ensemble-based modeling applied in the Antarctic produced short-term forecasts that were competitive with two operational modeling systems while assimilating on the O(106) fewer observations. A-DART is capable of assimilating additional observations for a variety of applications. This study highlights the capability of applying this ensemble-based DA technique for process and forecast studies in an observation-sparse region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher Riedel, christopher.p.riedel-1@ou.edu
Save