• Alpert, J. C., and V. K. Kumar, 2007: Radial wind super-obs from the WSR-88D radars in the NCEP operational assimilation system. Mon. Wea. Rev., 135, 10901109, https://doi.org/10.1175/MWR3324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and et al. , 2016: ONR tropical cyclone intensity 2015 NASA WB-57 HDSS dropsonde data, version 1.0. UCAR/NCAR–Earth Observatory Laboratory, accessed 1 May 2016, https://doi.org/10.5065/D6KW5D8M.

    • Crossref
    • Export Citation
  • Biswas, M. K., and et al. , 2018: Hurricane Weather Research and Forecasting (HWRF) model: 2018 scientific documentation. Developmental Testbed Center, 112 pp., http://www.dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf.

  • Black, P. G., L. Harrison, M. Beaubien, R. Bluth, H. Jonsson, A. B. Penny, R. W. Smith, and J. D. Doyle, 2017: High Definition Sounding System (HDSS) for atmospheric profiling. J. Atmos. Oceanic Technol., 34, 777796, https://doi.org/10.1175/JTECH-D-14-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311318, https://doi.org/10.1175/BAMS-88-3-311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christophersen, H., A. Aksoy, J. Dunion, and K. Sellwood, 2017: The impact of NASA Global Hawk unmanned aircraft dropwindsonde observations on tropical cyclone track, intensity, and structure: Case studies. Mon. Wea. Rev., 145, 18171830, https://doi.org/10.1175/MWR-D-16-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 18261841, https://doi.org/10.1175/2010WAF2222423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and et al. , 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity (TCI) experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., and X. G. Wang, 2019: Impact of assimilating upper-level dropsonde observations collected during the TCI field campaign on the prediction of intensity and structure of Hurricane Patricia (2015). Mon. Wea. Rev., 147, 30693089, https://doi.org/10.1175/MWR-D-18-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., J. Kaplan, C. S. Velden, and C. M. Hayden, 1990: Some comparisons of VAS and dropwindsonde data over the subtropical Atlantic. Mon. Wea. Rev., 118, 18691887, https://doi.org/10.1175/1520-0493(1990)118<1869:SCOVAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and et al. , 2010: Hurricane Weather Research and Forecasting (HWRF) model scientific documentation. Development Testbed Center, 80 pp., http://photino.cwb.gov.tw/rdcweb/lib/brief/2011/201106-27-28__HWRF/HWRF_final_2-2_cm.pdf.

  • Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. D. Marks Jr., K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, https://doi.org/10.1175/WAF-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2006: Sensitivity of hurricane intensity forecasts to convective momentum transport parameterization. Mon. Wea. Rev., 134, 664674, https://doi.org/10.1175/MWR3090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2011: Convective structure in rapidly intensifying tropical cyclones as depicted by passive microwave measurements. Geophys. Res. Lett., 38, L07805, https://doi.org/10.1029/2011GL047010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, https://doi.org/10.1175/MWR-2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HRD, 2015: Hurricane Research Division dataset during Hurricane Patricia. NOAA, accessed 19 November 2017, http://www.aoml.noaa.gov/hrd/Storm_pages/patricia2015/.

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and A. H. Murphy, 2015: Economic Value of Weather and Climate Forecasts. Cambridge University Press, 240 pp.

  • Kimball, S. K., and F. C. Dougherty, 2006: The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5. Mon. Wea. Rev., 134, 19872008, https://doi.org/10.1175/MWR3171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Wang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF ensemble-3DVAR hybrid system for the prediction of hurricane Ike (2008). Mon. Wea. Rev., 140, 35073524, https://doi.org/10.1175/MWR-D-12-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., N. Surgi, S. Lord, W. S. Wu, D. Parrish, S. Gopalakrishnan, J. Waldrop, and J. Gamache, 2006: Hurricane initialization in HWRF model. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 8A.2, http://ams.confex.com/ams/27Hurricanes/techprogram/paper_108496.htm.

  • Lu, X., and X. Wang, 2019: Improving hurricane analyses and predictions with TCI, IFEX field campaign observations, and CIMSS AMVs using the advanced hybrid data assimilation system for HWRF. Part I: What is missing to capture the rapid intensification of Hurricane Patricia (2015). Mon. Wea. Rev., 147, 13511373, https://doi.org/10.1175/MWR-D-18-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., and X. Wang, 2020: Improving hurricane analyses and predictions with TCI, IFEX field campaign observations, and CIMSS AMVs using the advanced hybrid data assimilation system for HWRF. Part II: Observation impacts on the analysis and prediction of Patricia (2015). Mon. Wea. Rev., 148, 14071430, https://doi.org/10.1175/MWR-D-19-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2017a: GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Quart. J. Roy. Meteor. Soc., 143, 223239, https://doi.org/10.1002/qj.2914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017b: GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehra, A., V. Tallapragada, Z. Zhang, B. Liu, L. Zhu, W. Wang, and H.-S. Kim, 2018: Advancing the state of the art in operational tropical cyclone forecasting at NCEP. Trop. Cyclone Res. Rev., 7, 5156, https://doi.org/10.6057/2018TCRR01.06.

    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., and F. Zhang, 2019: Practical uncertainties in the limited predictability of the record-breaking intensification of Hurricane Patricia (2015). Mon. Wea. Rev., 147, 35353556, https://doi.org/10.1175/MWR-D-18-0450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poteat, K. O., 1973: A comparison of satellite-derived, low-level and cirrus-level winds with conventional wind observations. J. Appl. Meteor., 12, 14161419, https://doi.org/10.1175/1520-0450(1973)012<1417:ACOSDL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, and J. Sun, 2009: Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity changes of Hurricane Dennis near a landfall. J. Atmos. Sci., 66, 33513365, https://doi.org/10.1175/2009JAS3121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., S. Zhang, M. Tong, and V. Tallapragada, 2016: Influence of the self-consistent regional ensemble background error covariance on hurricane inner-core data assimilation with the GSI-based hybrid system for HWRF. J. Atmos. Sci., 73, 49114925, https://doi.org/10.1175/JAS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., and D.-L. Zhang, 2018: On the extraordinary intensification of Hurricane Patricia (2015). Part I: Numerical experiments. Wea. Forecasting, 33, 12051224, https://doi.org/10.1175/WAF-D-18-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and et al. , 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231538, https://doi.org/10.1175/BAMS-87-11-1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and et al. , 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2016: Improving large-domain convection-allowing forecasts witt high-resolution analyses and ensemble data assimilation. Mon. Wea. Rev., 144, 17771803, https://doi.org/10.1175/MWR-D-15-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sears, J., and C. S. Velden, 2012: Validation of satellite-derived atmospheric motion vectors and analyses around tropical disturbances. J. Appl. Meteor. Climatol., 51, 18231834, https://doi.org/10.1175/JAMC-D-12-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., F. Zhang, Y. Weng, L. Tian, G. M. Heymsfield, and S. A. Braun, 2014: Ensemble Kalman filter assimilation of HIWRAP observations of Hurricane Karl (2010) from the unmanned Global Hawk aircraft. Mon. Wea. Rev., 142, 45594580, https://doi.org/10.1175/MWR-D-14-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and et al. , 2016: Hurricane Weather Research and Forecasting (HWRF) model: 2015 scientific documentation. NCAR Tech. Note NCAR/TN-522+STR, 122 pp., https://doi.org/10.5065/D6ZP44B5.

    • Crossref
    • Export Citation
  • Tong, M., and et al. , 2018: Impact of assimilating aircraft reconnaissance observations on tropical cyclone initialization and prediction using operational HWRF and GSI ensemble–variational hybrid data assimilation. Mon. Wea. Rev., 146, 41554177, https://doi.org/10.1175/MWR-D-17-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the Gridpoint Statistical Interpolation (GSI) variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. S. Whitaker, 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: Single resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, https://doi.org/10.1175/2011MWR3602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265274, https://doi.org/10.1175/1520-0469(1990)047<0265:GBITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B. L., R. S. Lindzen, V. Tallapragada, F. Weng, Q. Liu, J. A. Sippel, Z. Ma, and M. A. Bender, 2016: Increasing vertical resolution in U.S. models to improve track forecasts of Hurricane Joaquin with HWRF as an example. Proc. Natl. Acad. Sci. USA, 113, 11 76511 769, https://doi.org/10.1073/pnas.1613800113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., and X. Wang, 2003: Dependence of hurricane intensity and structures on vertical resolution and time-step size. Adv. Atmos. Sci., 20, 711725, https://doi.org/10.1007/BF02915397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, https://doi.org/10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., L. Zhu, X. Zhang, and V. Tallapragada, 2015: Sensitivity of idealized hurricane intensity and structures under varying background flows and initial vortex intensities to different vertical resolutions in HWRF. Mon. Wea. Rev., 143, 914932, https://doi.org/10.1175/MWR-D-14-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, https://doi.org/10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., T. S. Quirino, S. Gopalakrishnan, K.-S. Yeh, F. D. Marks Jr., and S. B. Goldenberg, 2011: HWRFX: Improving hurricane forecasts with high resolution modeling. Comput. Sci. Eng., 13, 1321, https://doi.org/10.1109/MCSE.2010.121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. Tyner, J. A. Zhang, E. Aligo, S. Gopalakrishnan, F. D. Marks, A. Mehra, and V. Tallapragada, 2019: Role of eyewall and rainband eddy forcing in tropical cyclone intensification. Atmos. Chem. Phys., 19, 14 28914 310, https://doi.org/10.5194/acp-19-14289-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 117 117 13
Full Text Views 34 34 2
PDF Downloads 55 55 4

Impact of Increasing Horizontal and Vertical Resolution during the HWRF Hybrid EnVar Data Assimilation on the Analysis and Prediction of Hurricane Patricia (2015)

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Although numerous studies have demonstrated that increasing model spatial resolution in free forecasts can potentially improve tropical cyclone (TC) intensity forecasts, studies on the impact of model resolution during data assimilation (DA) on TC prediction are lacking. In this study, using the ensemble-variational DA system for the Hurricane Weather Research and Forecasting (HWRF) Model, we investigated the individual impact of increasing the model resolution of first guess (FG) and background ensemble (BE) forecasts during DA on initial analyses and subsequent forecasts of Hurricane Patricia (2015). The impacts were compared between horizontal and vertical resolutions and also between the tropical storm (TS) and hurricane assimilation during Patricia. The results show that increasing the horizontal or vertical resolution in FG has a larger impact than increasing the resolution in BE on improving the analyzed TC intensity and structure for the hurricane stage. The result is reversed for the TS stage. These results are attributed to the effectiveness of increasing the FG resolution in intensifying the background vortex for the hurricane stage relative to the TS stage. Increasing the BE resolution contributes to improving the analyzed intensity through the better-resolved background correlation structure for both the hurricane and TS stages. Increasing horizontal resolution has an overall larger effect than increasing vertical resolution in improving the analysis at the hurricane stage and their effects are close for the analysis at the TS stage. Additionally, the more accurately analyzed primary circulation, secondary circulation, and warm-core structures via the increased resolution in DA lead to improved TC intensity forecasts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

Abstract

Although numerous studies have demonstrated that increasing model spatial resolution in free forecasts can potentially improve tropical cyclone (TC) intensity forecasts, studies on the impact of model resolution during data assimilation (DA) on TC prediction are lacking. In this study, using the ensemble-variational DA system for the Hurricane Weather Research and Forecasting (HWRF) Model, we investigated the individual impact of increasing the model resolution of first guess (FG) and background ensemble (BE) forecasts during DA on initial analyses and subsequent forecasts of Hurricane Patricia (2015). The impacts were compared between horizontal and vertical resolutions and also between the tropical storm (TS) and hurricane assimilation during Patricia. The results show that increasing the horizontal or vertical resolution in FG has a larger impact than increasing the resolution in BE on improving the analyzed TC intensity and structure for the hurricane stage. The result is reversed for the TS stage. These results are attributed to the effectiveness of increasing the FG resolution in intensifying the background vortex for the hurricane stage relative to the TS stage. Increasing the BE resolution contributes to improving the analyzed intensity through the better-resolved background correlation structure for both the hurricane and TS stages. Increasing horizontal resolution has an overall larger effect than increasing vertical resolution in improving the analysis at the hurricane stage and their effects are close for the analysis at the TS stage. Additionally, the more accurately analyzed primary circulation, secondary circulation, and warm-core structures via the increased resolution in DA lead to improved TC intensity forecasts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu
Save