• ARM Data Center, 2014: Doppler Lidar (sgpdlprofwind4newsC1) 2015-07-10 to 2015-07-11, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Atmospheric Radiation Measurement (ARM) Data Center, accessed 21 May 2018, https://doi.org/10.5439/1374838.

    • Crossref
    • Export Citation
  • ARM Data Center, 2015: Raman Lidar (sgp10srlprofmr1turnC1) 2015-07-10 to 2015-07-11, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Atmospheric Radiation Measurement (ARM) Data Center, accessed 26 July 2018, https://www.arm.gov/capabilities/observatories/sgp/locations/c1.

  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, https://doi.org/10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and et al. , 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., L. D. Riihimaki, Y. Qian, H. Yan, and M. Huang, 2015: The low-level jet over the Southern Great Plains determined from observations and reanalyses and its impact on moisture transport. J. Climate, 28, 66826706, https://doi.org/10.1175/JCLI-D-14-00719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergmaier, P. T., B. Geerts, Z. Wang, B. Liu, and P. C. Campbell, 2014: A dryline in southeast Wyoming. Part II: Airborne in situ and Raman lidar observations. Mon. Wea. Rev., 142, 29612977, https://doi.org/10.1175/MWR-D-13-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., T. J. Wagner, D. D. Turner, and J. Correia, 2017: Quantifying the accuracy and uncertainty of diurnal thermodynamic profiles and convection indices derived from the atmospheric emitted radiance interferometer. J. Appl. Meteor. Climatol., 56, 27472766, https://doi.org/10.1175/JAMC-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., W. G. Blumberg, P. M. Klein, and P. B. Chilson, 2015: Thermodynamic and turbulence characteristics of the Southern Great Plains nocturnal boundary layer under differing turbulent regimes. Bound.-Layer Meteor., 157, 401420, https://doi.org/10.1007/s10546-015-0072-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and et al. , 1997: LASE Validation Experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer, 289–295, https://doi.org/10.1007/978-3-642-60612-0_70.

    • Crossref
    • Export Citation
  • Byerle, L., and J. Paegle, 2003: Modulation of the Great Plains low-level jet and moisture transports by orography and large-scale circulations. J. Geophys. Res., 108, 8611, https://doi.org/10.1029/2002JD003005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, B. J., B. B. Demoz, and R. Delgado, 2019: An overview of low-level jet winds and corresponding mixed layer depths during PECAN. J. Geophys. Res., 124, 91419160, https://doi.org/10.1029/2019JD030658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R., 2016: FP3 Ellis, KS radiosonde data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 9 February 2019, https://doi.org/10.5065/D6GM85DZ.

    • Crossref
    • Export Citation
  • Deaconu, L. T., N. Ferlay, F. Waquet, F. Peers, F. Thieuleux, and P. Goloub, 2019: Satellite inference of water vapour and above-cloud aerosol combined effect on radiative budget and cloud-Top processes in the southeastern Atlantic Ocean. Atmos. Chem. Phys., 19, 11 61311 634, https://doi.org/10.5194/acp-19-11613-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, and D. J. Stensrud, 2019: An evaluation of the impact of assimilating AERI retrievals, kinematic profilers, rawinsondes, and surface observations on a forecast of a nocturnal convection initiation event during the PECAN field campaign. Mon. Wea. Rev., 147, 27392764, https://doi.org/10.1175/MWR-D-18-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, D. J. Stensrud, and D. D. Turner, 2020: Systematic evaluation of the impact of assimilating a network of ground-based remote sensing profilers for forecasts of nocturnal convection initiation during PECAN. Mon. Wea. Rev., 148, 47034728, https://doi.org/10.1175/MWR-D-20-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doubler, D. L., J. A. Winkler, X. Bian, C. K. Walters, and S. Zhong, 2015: An NARR-derived climatology of southerly and northerly low-level jets over North America and coastal environs. J. Appl. Meteor. Climatol., 54, 15961619, https://doi.org/10.1175/JAMC-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, https://doi.org/10.1175/JAS-D-14-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R., A. Nehrir, S. Kooi, C. Butler, and A. Notari, 2016: NASA DC-8 LASE data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 20 July 2018, https://doi.org/10.5065/D69C6VM6.

    • Crossref
    • Export Citation
  • Gebauer, J. G., A. Shapiro, E. Fedorovich, and P. Klein, 2018: Convection initiation caused by heterogeneous low-level jets over the Great Plains. Mon. Wea. Rev., 146, 26152637, https://doi.org/10.1175/MWR-D-18-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains Elevated Convection At Night Field Project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., and D. Turner, 2016: FP3 University of Manitoba Doppler Lidar Wind Profile Data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 30 May 2017, https://doi.org/10.5065/D60863P5.

    • Crossref
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., R. S. Schumacher, G. R. Herman, M. C. Coniglio, M. D. Parker, and C. L. Ziegler, 2019: Evolution of pre- and postconvective environmental profiles from mesoscale convective systems during PECAN. Mon. Wea. Rev., 147, 23292354, https://doi.org/10.1175/MWR-D-18-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, https://doi.org/10.1111/j.2153-3490.1967.tb01473.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based remote sensing boundary layer observations on short-term probabilistic forecasts of a tornadic supercell event. Wea. Forecasting, 34, 14531476, https://doi.org/10.1175/WAF-D-18-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, K. R. Haghi, and D. B. Parsons, 2018: Evaluation of forecasts of a convectively generated bore using an intensively observed case study from PECAN. Mon. Wea. Rev., 146, 30973122, https://doi.org/10.1175/MWR-D-18-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and et al. , 2011: Temperature and water vapor variance scaling in global models: Comparisons to satellite and aircraft data. J. Atmos. Sci., 68, 21562168, https://doi.org/10.1175/2011JAS3737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keene, K. M., and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, https://doi.org/10.1175/MWR-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., X. M. Hu, A. Shapiro, and M. Xue, 2016: Linkages between boundary-layer structure and the development of nocturnal low-level jets in central Oklahoma. Bound.-Layer Meteor., 158, 383408, https://doi.org/10.1007/s10546-015-0097-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and et al. , 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, https://doi.org/10.1175/JTECH-1662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and et al. , 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, https://doi.org/10.1175/JTECH-1663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., C. Flamat, J. W. Wilson, B. M. Gentry, and B. D. Jamison, 2008: An atmospheric soliton observed with Doppler radar, differential absorption lidar, and a molecular Doppler lidar. J. Atmos. Oceanic Technol., 25, 12671287, https://doi.org/10.1175/2007JTECHA951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, G., B. Geerts, Z. Wang, C. Grasmick, X. Jing, and J. Yang, 2019: Interactions between a nocturnal MCS and the stable boundary layer, as observed by an airborne compact Raman lidar during PECAN. Mon. Wea. Rev., 147, 31693189, https://doi.org/10.1175/MWR-D-18-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley and Sons, 430 pp.

  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, https://doi.org/10.1175/JAS-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., E. R. Nielsen, M. D. Parker, S. M. Hitchcock, and R. S. Schumacher, 2017: The impact of low-level moisture errors on model forecasts of an MCS observed during PECAN. Mon. Wea. Rev., 145, 35993624, https://doi.org/10.1175/MWR-D-16-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., and R. E. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 18071817, https://doi.org/10.1175/JAS-D-13-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2018: Initiation mechanisms of nocturnal convection without nearby surface boundaries over the central and Southern Great Plains during the warm season. Mon. Wea. Rev., 146, 30533078, https://doi.org/10.1175/MWR-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., A. Dörnbrack, C. Kiemle, S. Rahm, and M. Wirth, 2010: Tropospheric water vapor transport as determined from airborne lidar measurements. J. Atmos. Oceanic Technol., 27, 20172030, https://doi.org/10.1175/2010JTECHA1418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Resolution dependence of initiation and upscale growth of deep convection in convection-allowing forecasts of the 31 May–1 June 2013 supercell and MCS. Mon. Wea. Rev., 143, 43314354, https://doi.org/10.1175/MWR-D-15-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Federovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sisterson, D. L., R. A. Peppler, T. S. Cress, P. J. Lamb, and D. D. Turner, 2016: The ARM Southern Great Plains (SGP) site. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0004.1.

    • Crossref
    • Export Citation
  • Smith, E. N., J. A. Gibbs, E. Fedorovich, and P. M. Klein, 2018: WRF Model study of the Great Plains low-level jet: Effects of grid spacing and boundary layer parameterization. J. Appl. Meteor. Climatol., 57, 23752397, https://doi.org/10.1175/JAMC-D-17-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. N., J. G. Gebauer, P. M. Klein, E. Fedorovich, and J. A. Gibbs, 2019: The Great Plains low-level jet during PECAN: Observed and simulated characteristics. Mon. Wea. Rev., 147, 18451869, https://doi.org/10.1175/MWR-D-18-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteor., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spuler, S. M., K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, 2015: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos. Meas. Tech., 8, 10731087, https://doi.org/10.5194/amt-8-1073-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinke, S., S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo, and S. Crewell, 2015: Assessment of small-scale integrated water vapour variability during HOPE. Atmos. Chem. Phys., 15, 26752692, https://doi.org/10.5194/acp-15-2675-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stelten, S., and W. A. Gallus, 2017: Pristine nocturnal convective initiation: A climatology and preliminary examination of predictability. Wea. Forecasting, 32, 16131635, https://doi.org/10.1175/WAF-D-16-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tollerud, E. I., and et al. , 2008: Mesoscale moisture transport by the low-level jet during the IHOP field experiment. Mon. Wea. Rev., 136, 37813795, https://doi.org/10.1175/2008MWR2421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toms, B. A., J. M. Tomaszewski, D. D. Turner, and S. E. Koch, 2017: Analysis of a lower-tropospheric gravity wave train using direct and remote sensing measurement systems. Mon. Wea. Rev., 145, 27912812, https://doi.org/10.1175/MWR-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017: Mesoscale vertical motions near nocturnal convection initiation in PECAN. Mon. Wea. Rev., 145, 29192941, https://doi.org/10.1175/MWR-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and W. G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile retrieval algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 13391354, https://doi.org/10.1109/JSTARS.2018.2874968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., J. E. M. Goldsmith, and R. A. Ferrare, 2016: Development and applications of the ARM Raman Lidar. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0026.1.

    • Crossref
    • Export Citation
  • UCAR/NCAR–EOL, 2015: FP1 ARM Central Facility Radiosonde Data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 12 November 2018, https://data.eol.ucar.edu/dataset/485.021.

  • UCAR/NCAR–EOL, 2016a: FP3 NCAR/EOL Water Vapor DIAL, QC data in netCDF, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 May 2017, https://doi.org/10.5065/D6SJ1HR1.

    • Crossref
    • Export Citation
  • UCAR/NCAR–EOL, 2016b: Radar regional 3D mosaic in netCDF format, DBZ and ZDR, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 24 September 2016, https://doi.org/10.5065/D6QR4VHM.

    • Crossref
    • Export Citation
  • UCAR/NCAR–EOL, 2016c: SkewT Plots from All PECAN Radiosondes, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 16 December 2016, https://data.eol.ucar.edu/dataset/485.123.

  • Vanderwende, B. J., J. K. Lundquist, M. E. Rhodes, E. S. Takle, and S. L. Irvin, 2015: Observing and simulating the summertime low-level jet in central Iowa. Mon. Wea. Rev., 143, 23192336, https://doi.org/10.1175/MWR-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., W. F. Feltz, and S. A. Ackerman, 2008: The temporal evolution of convective indices in storm-producing environments. Wea. Forecasting, 23, 786794, https://doi.org/10.1175/2008WAF2007046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., J. A. Winkler, R. P. Shadbolt, J. van Ravensway, and G. D. Bierly, 2008: A long-term climatology of southerly and northerly low-level jets for the Central United States. Ann. Assoc. Amer. Geogr., 98, 521552, https://doi.org/10.1080/00045600802046387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., J. A. Winkler, S. Husseini, R. Keeling, J. Nikolic, and S. Zhong, 2014: Low-level jets in the North American Regional Reanalysis (NARR): A comparison with rawinsonde observations. J. Appl. Meteor. Climatol., 53, 20932113, https://doi.org/10.1175/JAMC-D-13-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weather Prediction Center, 2015: WPC surface analysis valid for 07/11/2015 at 03 UTC [surface analysis map image]. Weather Prediction Center (WPC), accessed 12 November 2018, https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive_maps.php?arcdate=07/11/2015&selmap=2015071103.

  • Weckwerth, T. M., and et al. , 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, https://doi.org/10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and U. Romatschke, 2019: Where, when, and why did it rain during PECAN? Mon. Wea. Rev., 147, 35573573, https://doi.org/10.1175/MWR-D-18-0458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus, R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., S. B. Trier, D. W. Reif, R. D. Roberts, and T. M. Weckwerth, 2018: Nocturnal elevated convection initiation of the PECAN 4 July hailstorm. Mon. Wea. Rev., 146, 243262, https://doi.org/10.1175/MWR-D-17-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., H. S. Bauer, M. Grzeschik, A. Behrendt, F. Vandenberghe, E. V. Browell, S. Ismail, and R. A. Ferrare, 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Wea. Rev., 134, 209230, https://doi.org/10.1175/MWR3070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 193 193 17
Full Text Views 78 78 13
PDF Downloads 89 89 18

Lidar Observations of a Mesoscale Moisture Transport Event Impacting Convection and Comparison to Rapid Refresh Model Analysis

View More View Less
  • 1 Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland
  • | 2 Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland
  • | 3 Global Systems Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The 2015 Plains Elevated Convection at Night (PECAN) field campaign provided a wealth of intensive observations for improving understanding of interplay between the Great Plains low-level jet (LLJ), mesoscale convective systems (MCSs), and other phenomena in the nocturnal boundary layer. This case study utilizes PECAN ground-based Doppler and water vapor lidar and airborne water vapor lidar observations for a detailed examination of water vapor transport in the Great Plains. The chosen case, 11 July 2015, featured a strong LLJ that helped sustain an MCS overnight. The lidars resolved boundary layer moisture being transported northward, leading to a large increase in water vapor in the lowest several hundred meters above the surface in northern Kansas. A branch of nocturnal convection initiated coincident with the observed maximum water vapor flux. Radiosondes confirmed an increase in convective potential within the LLJ layer. Moist static energy (MSE) growth was generated by increasing moisture in spite of a temperature decrease in the LLJ layer. This unique dataset is also used to evaluate the Rapid Refresh (RAP) analysis model performance, comparing model output against the continuous lidar profiles of water vapor and wind. While the RAP analysis captured the large-scale trends, errors in water vapor mixing ratio were found ranging from 0 to 2 g kg−1 at the ground-based lidar sites. Comparison with the airborne lidar throughout the PECAN domain yielded an RMSE of 1.14 g kg−1 in the planetary boundary layer. These errors mostly manifested as contiguous dry or wet regions spanning spatial scales on the order of ten to hundreds of kilometers.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Corresponding author: Brian J. Carroll, brian.carroll@umbc.edu

Abstract

The 2015 Plains Elevated Convection at Night (PECAN) field campaign provided a wealth of intensive observations for improving understanding of interplay between the Great Plains low-level jet (LLJ), mesoscale convective systems (MCSs), and other phenomena in the nocturnal boundary layer. This case study utilizes PECAN ground-based Doppler and water vapor lidar and airborne water vapor lidar observations for a detailed examination of water vapor transport in the Great Plains. The chosen case, 11 July 2015, featured a strong LLJ that helped sustain an MCS overnight. The lidars resolved boundary layer moisture being transported northward, leading to a large increase in water vapor in the lowest several hundred meters above the surface in northern Kansas. A branch of nocturnal convection initiated coincident with the observed maximum water vapor flux. Radiosondes confirmed an increase in convective potential within the LLJ layer. Moist static energy (MSE) growth was generated by increasing moisture in spite of a temperature decrease in the LLJ layer. This unique dataset is also used to evaluate the Rapid Refresh (RAP) analysis model performance, comparing model output against the continuous lidar profiles of water vapor and wind. While the RAP analysis captured the large-scale trends, errors in water vapor mixing ratio were found ranging from 0 to 2 g kg−1 at the ground-based lidar sites. Comparison with the airborne lidar throughout the PECAN domain yielded an RMSE of 1.14 g kg−1 in the planetary boundary layer. These errors mostly manifested as contiguous dry or wet regions spanning spatial scales on the order of ten to hundreds of kilometers.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Corresponding author: Brian J. Carroll, brian.carroll@umbc.edu
Save