Remote Rainfall of Typhoon Khanun (2017): Monsoon Mode and Topographic Mode

Yi-Hsuan Lin Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Yi-Hsuan Lin in
Current site
Google Scholar
PubMed
Close
and
Chun-Chieh Wu Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chun-Chieh Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Remote rainfall related to tropical cyclones (TCs) can be attributed to interaction between the northeasterly monsoon and TC circulation (hereafter monsoon mode), and topographic blocking and lifting effects (hereafter topographic mode). Typhoon Khanun (2017) is a case in point affected by both modes. The objective of this study is to understand the key factors leading to uncertainty in the TC-induced remote rainfall. Ensemble simulations are conducted, with the ensemble members related to the monsoon mode classified into subtypes based on the geographic location of the precipitation maxima. The results demonstrate that frontogenesis and terrain-induced uplifting are the main mechanisms leading to the heavy precipitation in northeastern Taiwan, while the orographic lifting and the interaction between the TC circulation and the topographically blocked northeasterlies result in the heavy rainfall in southeastern Taiwan. For the topographic mode, at a larger rainfall threshold, strong relation is found between the inflow angle of the TC circulation and the cumulative frequency of the rainfall, while at a smaller rainfall threshold, rainfall cumulative frequency is related to the ensemble track directions. Sensitivity experiments with TC-related moisture reduced (MR) and the terrain of Taiwan removed (TR) show that the average of the 3-day accumulated rainfall is reduced by 40% and more than 90% over the mountainous area in MR and TR, respectively. Overall, this study highlights the fact that multiple mechanisms contribute to remote rainfall processes in Khanun, particularly the orographic forcing, thus providing better insights into the predictability of TC remote rainfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun-Chieh Wu, cwu@as.ntu.edu.tw

Abstract

Remote rainfall related to tropical cyclones (TCs) can be attributed to interaction between the northeasterly monsoon and TC circulation (hereafter monsoon mode), and topographic blocking and lifting effects (hereafter topographic mode). Typhoon Khanun (2017) is a case in point affected by both modes. The objective of this study is to understand the key factors leading to uncertainty in the TC-induced remote rainfall. Ensemble simulations are conducted, with the ensemble members related to the monsoon mode classified into subtypes based on the geographic location of the precipitation maxima. The results demonstrate that frontogenesis and terrain-induced uplifting are the main mechanisms leading to the heavy precipitation in northeastern Taiwan, while the orographic lifting and the interaction between the TC circulation and the topographically blocked northeasterlies result in the heavy rainfall in southeastern Taiwan. For the topographic mode, at a larger rainfall threshold, strong relation is found between the inflow angle of the TC circulation and the cumulative frequency of the rainfall, while at a smaller rainfall threshold, rainfall cumulative frequency is related to the ensemble track directions. Sensitivity experiments with TC-related moisture reduced (MR) and the terrain of Taiwan removed (TR) show that the average of the 3-day accumulated rainfall is reduced by 40% and more than 90% over the mountainous area in MR and TR, respectively. Overall, this study highlights the fact that multiple mechanisms contribute to remote rainfall processes in Khanun, particularly the orographic forcing, thus providing better insights into the predictability of TC remote rainfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun-Chieh Wu, cwu@as.ntu.edu.tw
Save
  • Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9, 265278, https://doi.org/10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., J. M. Cordeira, T. J. Galarneau Jr., B. J. Moore, and H. M. Archambault, 2012: An analysis of multiple predecessor rain events ahead of Tropical Cyclones Ike and Lowell: 10–15 September 2008. Mon. Wea. Rev., 140, 10811107, https://doi.org/10.1175/MWR-D-11-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y.-T. Yang, and H.-C. Kuo, 2013: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Climate, 26, 41384147, https://doi.org/10.1175/JCLI-D-12-00463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-S., Y.-L. Lin, N.-N. Hsu, C.-L. Liu, and C.-Y. Chen, 2013: Orographic effects on heavy rainfall events over northeastern Taiwan during the northeasterly monsoon season. Atmos. Res., 122, 310335, https://doi.org/10.1016/j.atmosres.2012.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., W. Wang, K.-H. Lau, Q.-H. Zhang, and Y.-S. Chung, 2000: Mesoscale convective systems along the Meiyu front in a numerical model. Meteor. Atmos. Phys., 75, 149160, https://doi.org/10.1007/s007030070002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and C.-C. Wu, 2016: The remote effect of Typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan. Mon. Wea. Rev., 144, 31093131, https://doi.org/10.1175/MWR-D-15-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-J. G., and C.-P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (mei-yu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942953, https://doi.org/10.1175/1520-0493(1980)108<0942:TSAVBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. H., H.-C. Kuo, C.-C. Wang, and Y.-T. Yang, 2017: Influence of southwest monsoon flow and typhoon motion on Taiwan rainfall during the exit phase. Quart. J. Roy. Meteor. Soc., 143, 30143024, https://doi.org/10.1002/qj.3156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiao, S., and Y.-L. Lin, 2003: Numerical modeling of an orographically enhanced precipitation event associated with Tropical Storm Rachel over Taiwan. Wea. Forecasting, 18, 325344, https://doi.org/10.1175/1520-0434(2003)018<0325:NMOAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, https://doi.org/10.1029/2010JD015092.

    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743, https://doi.org/10.1175/2010MWR3582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, https://doi.org/10.1175/MWR-D-13-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cote, M. R., 2007: Predecessor rain events in advance of tropical cyclones. M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 200 pp., http://cstar.cestm.albany.edu/CAP_Projects/Project10/index.htm.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, https://doi.org/10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, https://doi.org/10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, X., and Y.-H. Kuo, 2013: Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique. Mon. Wea. Rev., 141, 39083932, https://doi.org/10.1175/MWR-D-13-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, https://doi.org/10.1175/2010MWR3243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.-C., and Y.-L. Lin, 2014: A study on the structure and precipitation of Morakot (2009) induced by the central mountain range of Taiwan. Meteor. Atmos. Phys., 123, 115141, https://doi.org/10.1007/s00703-013-0290-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., and T. Ogasawara, 2006: On the role of typhoons in generating PJ teleconnection patterns over the western North Pacific in late summer. SOLA, 2, 3740, https://doi.org/10.2151/sola.2006-010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Pecnick, and M. A. Shapiro, 1986: Diagnosis of the role of vertical deformation in a two-dimensional primitive equation model of upper-level frontogenesis. J. Atmos. Sci., 43, 839850, https://doi.org/10.1175/1520-0469(1986)043<0839:DOTROV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-F., C.-C. Wu, T.-H. Yen, Y.-H. Huang, and G.-Y. Lien, 2020: Typhoon Fanapi (2010) and its interaction with Taiwan terrain—Evaluation of the uncertainty in track, intensity and rainfall simulations. J. Meteor. Soc. Japan, 98, 93113, https://doi.org/10.2151/jmsj.2020-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, https://doi.org/10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008a: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522540, https://doi.org/10.1175/2007MWR2106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008b: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 36713682, https://doi.org/10.1175/2008MWR2270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., L. F. Bosart, D. Keyser, and M. L. Jurewicz, 2013: Synoptic-scale environments of predecessor rain events occurring east of the Rocky Mountains in association with Atlantic basin tropical cyclones. Mon. Wea. Rev., 141, 10221047, https://doi.org/10.1175/MWR-D-12-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1984: Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J. Meteor. Soc. Japan, 62, 880894, https://doi.org/10.2151/jmsj1965.62.6_880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and N. A. Bond, 1993: The influence of coastal orography: The Yakutat storm. Mon. Wea. Rev., 121, 13881397, https://doi.org/10.1175/1520-0493(1993)121<1388:TIOCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and N. A. Bond, 1995: Observations and scale analysis of coastal wind jets. Mon. Wea. Rev., 123, 29342941, https://doi.org/10.1175/1520-0493(1995)123<2934:OASAOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, T.-Y., Y.-T. Yang, H.-C. Kuo, Y.-C. Tan, J.-S. Lai, T.-J. Chang, C.-S. Lee, and K.-H. Hsu, 2013: Improvement of watershed flood forecasting by typhoon rainfall climate model with an ANN-based southwest monsoon rainfall enhancement. J. Hydrol., 506, 90100, https://doi.org/10.1016/j.jhydrol.2013.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geophys. Publ., 11 (6), 127.

  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., T. J. Galarneau Jr., and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon. Wea. Rev., 139, 650667, https://doi.org/10.1175/2010MWR3453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

    • Crossref
    • Export Citation
  • Stoelinga, M. T., 2009: A users’ guide to RIP version 4.5: A program for visualizing mesoscale model output. University of Washington, accessed 30 July 2015, http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm.

  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice–water saturation adjustment. Mon. Wea. Rev., 117, 231235, https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2011: High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations. Terr. Atmos. Oceanic Sci., 22, 673696, https://doi.org/10.3319/TAO.2011.08.26.01(TM).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Wang, and H. Fudeyasu, 2009: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon. Wea. Rev., 137, 36993716, https://doi.org/10.1175/2009MWR2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissmann, M., and Coauthors, 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908920, https://doi.org/10.1175/2010MWR3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 15331549, https://doi.org/10.1175/1520-0493(2001)129<1533:NSOTGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., 2013: Typhoon Morakot: Key findings from the journal TAO for improving prediction of extreme rains at landfall. Bull. Amer. Meteor. Soc., 94, 155160, https://doi.org/10.1175/BAMS-D-11-00155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780, https://doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 10011015, https://doi.org/10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 11571176, https://doi.org/10.1175/2007WAF2006062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K. K. W. Cheung, and Y.-Y. Lo, 2009: Numerical study of the rainfall event due to interaction of Typhoon Babs (1998) and the northeasterly monsoon. Mon. Wea. Rev., 137, 20492064, https://doi.org/10.1175/2009MWR2757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 38063822, https://doi.org/10.1175/2010JAS3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., S.-G. Chen, S.-C. Lin, T.-H. Yen, and T.-C. Chen, 2013: Uncertainty and predictability of tropical cyclone rainfall based on ensemble simulations of Typhoon Sinlaku (2008). Mon. Wea. Rev., 141, 35173538, https://doi.org/10.1175/MWR-D-12-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., C.-C. Wu, T.-H. Yen, and Y. Luo, 2017: Synoptic analysis of extreme hourly precipitation in Taiwan during 2003–12. Mon. Wea. Rev., 145, 51235140, https://doi.org/10.1175/MWR-D-17-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, H., B. Geng, H. Uyeda, and K. Tsuboki, 2007: Thermodynamic impact of the heated landmass on the nocturnal evolution of a cloud cluster over a Meiyu–Baiu front. J. Meteor. Soc. Japan, 85, 663685, https://doi.org/10.2151/jmsj.85.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, K., and R. Kawamura, 2007: Dynamical link between typhoon activity and the PJ teleconnection pattern from early summer to autumn as revealed by the JRA-25 reanalysis. SOLA, 3, 6568, https://doi.org/10.2151/sola.2007-017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yen, T.-H., C.-C. Wu, and G.-Y. Lien, 2011: Rainfall simulations of Typhoon Morakot with controlled translation speed based on EnKF data assimilation. Terr. Atmos. Oceanic Sci., 22, 647660, https://doi.org/10.3319/TAO.2011.07.05.01(TM).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and L.-W. Cheng, 2008: Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000). Mon. Wea. Rev., 136, 497521, https://doi.org/10.1175/2007MWR2129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and L.-W. Cheng, 2013: Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009). J. Atmos. Sci., 70, 28942915, https://doi.org/10.1175/JAS-D-12-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and L.-W. Cheng, 2014: Dual-Doppler-derived profiles of the southwesterly flow associated with southwest and ordinary typhoons off the southwestern coast of Taiwan. J. Atmos. Sci., 71, 32023222, https://doi.org/10.1175/JAS-D-13-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and C.-Y. Lin, 2017: Formation and maintenance of a long-lived Taiwan rainband during 1–3 March 2003. J. Atmos. Sci., 74, 12111232, https://doi.org/10.1175/JAS-D-16-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, J., and Z. Meng, 2017: Impact of assimilating Taiwan’s coastal radar radial velocity on forecasting Typhoon Morakot (2009) in southeastern China using a WRF-based ENKF. Sci. China Earth Sci., 60, 315327, https://doi.org/10.1007/s11430-015-0259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, J., Z. Meng, C.-K. Yu, and L.-W. Cheng, 2017: Impact of coastal radar observability on the forecast of the track and rainfall of Typhoon Morakot (2009) using WRF-based ensemble Kalman filter data assimilation. Adv. Atmos. Sci., 34, 6678, https://doi.org/10.1007/s00376-016-6028-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Meng, and A. Aksoy, 2006: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722736, https://doi.org/10.1175/MWR3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, Y.-H. Kuo, J. S. Whitaker, and B. Xie, 2010: Predicting Typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Wea. Forecasting, 25, 18161825, https://doi.org/10.1175/2010WAF2222414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y. S., S. T. Gao, and S. S. P. Shen, 2004: A diagnostic study of formation and structures of Meiyu front system over East Asia. J. Meteor. Soc. Japan, 82, 15651576, https://doi.org/10.2151/jmsj.82.1565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., and Coauthors, 2016: Prediction and predictability of high-impact western Pacific landfalling Tropical Cyclone Vicente (2012) through convection-permitting ensemble assimilation of Doppler radar velocity. Mon. Wea. Rev., 144, 2143, https://doi.org/10.1175/MWR-D-14-00403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 281 0 0
Full Text Views 760 353 37
PDF Downloads 563 179 11