• Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273287, https://doi.org/10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K., M. Hu, M. Xue, and J. Gao, 2005: Efficient assimilation of radar data at high resolution for short-range numerical weather prediction. World Weather Research Program Symp. on Nowcasting and Very Short-Range Forecasting, Toulouse, France, WMO, Paper 3.06.

    • Search Google Scholar
    • Export Citation
  • Carley, J. R., 2012: Hybrid ensemble-3DVar radar data assimilation for the short-term prediction of convective storms. Ph.D. dissertation, Purdue University, 205 pp.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and M. L. Weisman, 2010: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF Model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, https://doi.org/10.1175/2010WAF2222404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. S. Kain, P. T. Marsh, J. Correia, M. Xue, and F. Kong, 2012: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, https://doi.org/10.1175/WAF-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, https://doi.org/10.1002/qj.49712051912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 13331347, https://doi.org/10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Pondeca, M. S., and Coauthors, 2011: The real-time mesoscale analysis at NOAA’s National Centers for Environmental Prediction: Current status and development. Wea. Forecasting, 26, 593612, https://doi.org/10.1175/WAF-D-10-05037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City thunderstorm: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Coauthors, 2016: Development of a High-Resolution Rapid Refresh Ensemble (HRRRE) for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8B.2, https://ams.confex.com/ams/28SLS/webprogram/Paper301555.html.

    • Search Google Scholar
    • Export Citation
  • Duda, J. D., X. Wang, Y. Wang, and J. R. Carley, 2019: Comparing the assimilation of radar reflectivity using the direct GSI-based Ensemble–Variational (EnVar) and indirect cloud analysis methods in convection-allowing forecasts over the continental United States. Mon. Wea. Rev., 147, 16551678, https://doi.org/10.1175/MWR-D-18-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, https://doi.org/10.1175/JAS-D-11-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, https://doi.org/10.1175/MWR3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 22462260, https://doi.org/10.1175/2007MWR2288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, R., M. Xue, and C. Liu, 2018: Development of a hybrid En3DVar data assimilation system and comparisons with 3DVar and EnKF for radar data assimilation with observing system simulation experiments. Mon. Wea. Rev., 146, 175198, https://doi.org/10.1175/MWR-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lippi, D. E., J. R. Carley, and D. T. Kleist, 2019: Improvements to the assimilation of Doppler radial winds for convection-permitting forecasts of a heavy rain event. Mon. Wea. Rev., 147, 36093632, https://doi.org/10.1175/MWR-D-18-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., M. Xue, and R. Kong, 2020: Direct variational assimilation of radar reflectivity and radial velocity data: Issues with nonlinear reflectivity operator and solutions. Mon. Wea. Rev., 148, 14831502, https://doi.org/10.1175/MWR-D-19-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-VAR. Quart. J. Roy. Meteor. Soc., 129, 31833203, https://doi.org/10.1256/qj.02.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An automated method for depicting mesocyclone paths and intensities. Wea. Forecasting, 28, 570585, https://doi.org/10.1175/WAF-D-12-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, J. F., V. Lakshmanan, P. L. Heinselman, M. B. Richman, and T. M. Smith, 2013: Range-correcting azimuthal shear in Doppler radar data. Wea. Forecasting, 28, 194211, https://doi.org/10.1175/WAF-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., K. Zhu, M. Xue, X. Wang, M. Hu, S. G. Benjamin, S. S. Weygandt, and J. S. Whitaker, 2014: A GSI-based coupled EnSRF–En3DVar hybrid data assimilation system for the operational Rapid Refresh model: Tests at a reduced resolution. Mon. Wea. Rev., 142, 37563780, https://doi.org/10.1175/MWR-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., M. Wang, and M. Xue, 2020: Impacts of humidity adjustment through radar data assimilation using cloud analysis on the analysis and prediction of a squall line in Southern China. Earth Space Sci., 7, e2019EA000893, https://doi.org/10.1029/2019EA000893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A., M. Xue, A. Shapiro, K. Brewster, and J. Gao, 2011: The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224246, https://doi.org/10.1175/2010MWR3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2012: Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data. Mon. Wea. Rev., 140, 21262146, https://doi.org/10.1175/MWR-D-11-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, https://doi.org/10.1175/MWR2898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, S. Fan, and X.-Y. Huang, 2013a: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889902, https://doi.org/10.1175/JAMC-D-12-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X. Huang, and T. Auligne, 2013b: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244, https://doi.org/10.1175/MWR-D-12-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently proposed ensemble/VAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222227, https://doi.org/10.1175/MWR3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, https://doi.org/10.1007/s00703-001-0595-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Y. Jung, and G. Zhang, 2010: State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data. Quart. J. Roy. Meteor. Soc., 136, 685700, https://doi.org/10.1002/qj.593.

    • Search Google Scholar
    • Export Citation
  • Yang, R., R. J. Purser, J. R. Carley, M. Pondeca, Y. Zhu, and S. Levine, 2020: Application of a nonlinear transformation function to the variational analysis of visibility and ceiling height. NOAA/NCEP Office Note 502, 38 pp., https://doi.org/10.25923/esw8-5n84.

    • Crossref
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City Tornadic thunderstorm storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 124 124 28
Full Text Views 29 29 16
PDF Downloads 33 33 19

Use of Power Transform Mixing Ratios as Hydrometeor Control Variables for Direct Assimilation of Radar Reflectivity in GSI En3DVar and Tests with Five Convective Storm Cases

View More View Less
  • 1 Chongqing Institute of Meteorological Sciences, Chongqing, China
  • 2 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • 3 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

When directly assimilating radar data within a variational framework using hydrometeor mixing ratios (q) as control variables (CVq), the gradient of the cost function becomes extremely large when background mixing ratio is close to zero. This significantly slows down minimization convergence and makes the assimilation of radial velocity and other observations ineffective because of the dominance of the reflectivity observation term in the cost function gradient. Using logarithmic hydrometeor mixing ratios as control variables (CV logq) can alleviate the problem but the high nonlinearity of logarithmic transformation can introduce spurious analysis increments into mixing ratios. In this study, power transform of hydrometeors is proposed to form new control variables (CVpq) where the nonlinearity of transformation can be adjusted by a tuning exponent or power parameter p. The performance of assimilating radar data using CVpq is compared with those using CVq and CV logq for the analyses and forecasts of five convective storm cases from the spring of 2017. Results show that CVpq with p = 0.4 (CVpq0.4) gives the best reflectivity forecasts in terms of root-mean-square error and equitable threat score. Furthermore, CVpq0.4 has faster convergence of cost function minimization than CVq and produces less spurious analysis increment than CV logq. Compared to CVq and CV logq, CVpq0.4 has better skills of 0–3-h composite reflectivity forecasts, and the updraft helicity tracks for the 16 May 2017 Texas and Oklahoma tornado outbreak case are more consistent with observations when using CVpq0.4.

Current affiliation: I.M. Systems Group, Inc., and NOAA/NCEP/Environmental Modeling Center, College Park, Maryland.

Current affiliation: NOAA/NWS/OSTI/Modeling Program Division, Silver Spring, Maryland.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chengsi Liu, cliu@ou.edu

Abstract

When directly assimilating radar data within a variational framework using hydrometeor mixing ratios (q) as control variables (CVq), the gradient of the cost function becomes extremely large when background mixing ratio is close to zero. This significantly slows down minimization convergence and makes the assimilation of radial velocity and other observations ineffective because of the dominance of the reflectivity observation term in the cost function gradient. Using logarithmic hydrometeor mixing ratios as control variables (CV logq) can alleviate the problem but the high nonlinearity of logarithmic transformation can introduce spurious analysis increments into mixing ratios. In this study, power transform of hydrometeors is proposed to form new control variables (CVpq) where the nonlinearity of transformation can be adjusted by a tuning exponent or power parameter p. The performance of assimilating radar data using CVpq is compared with those using CVq and CV logq for the analyses and forecasts of five convective storm cases from the spring of 2017. Results show that CVpq with p = 0.4 (CVpq0.4) gives the best reflectivity forecasts in terms of root-mean-square error and equitable threat score. Furthermore, CVpq0.4 has faster convergence of cost function minimization than CVq and produces less spurious analysis increment than CV logq. Compared to CVq and CV logq, CVpq0.4 has better skills of 0–3-h composite reflectivity forecasts, and the updraft helicity tracks for the 16 May 2017 Texas and Oklahoma tornado outbreak case are more consistent with observations when using CVpq0.4.

Current affiliation: I.M. Systems Group, Inc., and NOAA/NCEP/Environmental Modeling Center, College Park, Maryland.

Current affiliation: NOAA/NWS/OSTI/Modeling Program Division, Silver Spring, Maryland.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chengsi Liu, cliu@ou.edu
Save