Atmospheric River Sectors: Definition and Characteristics Observed Using Dropsondes from 2014–20 CalWater and AR Recon

A. Cobb Center for Western Weather and Water Extremes (CW3E), Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by A. Cobb in
Current site
Google Scholar
PubMed
Close
,
A. Michaelis Center for Western Weather and Water Extremes (CW3E), Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by A. Michaelis in
Current site
Google Scholar
PubMed
Close
,
S. Iacobellis Center for Western Weather and Water Extremes (CW3E), Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by S. Iacobellis in
Current site
Google Scholar
PubMed
Close
,
F. M. Ralph Center for Western Weather and Water Extremes (CW3E), Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by F. M. Ralph in
Current site
Google Scholar
PubMed
Close
, and
L. Delle Monache Center for Western Weather and Water Extremes (CW3E), Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by L. Delle Monache in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric rivers (ARs) are responsible for intense winter rainfall events impacting the U.S. West Coast, and have been studied extensively during CalWater and AR Recon field programs (2014–20). A unique set of 858 dropsondes deployed in lines transecting 33 ARs are analyzed, and integrated vapor transport (IVT) is used to define five regions: core, cold and warm sectors, and non-AR cold and warm sides. The core is defined as having at least 80% of the maximum IVT in the transect. Remaining dropsondes with IVT > 250 kg m−1 s−1 are assigned to cold or warm sectors, and those outside of this threshold form non-AR sides. The mean widths of the three AR sectors are approximately 280 km. However, the core contains roughly 50% of all the water vapor transport (i.e., the total IVT), while the others each contain roughly 25%. A low-level jet occurs most often in the core and warm sector with mean maximum wind speeds of 28.3 and 21.7 m s−1, comparable to previous studies, although with heights approximately 300 m lower than previously reported. The core exhibits characteristics most favorable for adiabatic lifting to saturation by the California coastal range. On average, stability in the core is moist neutral, with considerable variability around the mean. A relaxed squared moist Brunt–Väisälä frequency threshold shows ~8%–12% of core profiles exhibiting near-moist neutrality. The vertical distribution of IVT, which modulates orographic precipitation, varied across AR sectors, with 75% of IVT residing below 3115 m in the core.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Cobb, accobb@ucsd.edu

Abstract

Atmospheric rivers (ARs) are responsible for intense winter rainfall events impacting the U.S. West Coast, and have been studied extensively during CalWater and AR Recon field programs (2014–20). A unique set of 858 dropsondes deployed in lines transecting 33 ARs are analyzed, and integrated vapor transport (IVT) is used to define five regions: core, cold and warm sectors, and non-AR cold and warm sides. The core is defined as having at least 80% of the maximum IVT in the transect. Remaining dropsondes with IVT > 250 kg m−1 s−1 are assigned to cold or warm sectors, and those outside of this threshold form non-AR sides. The mean widths of the three AR sectors are approximately 280 km. However, the core contains roughly 50% of all the water vapor transport (i.e., the total IVT), while the others each contain roughly 25%. A low-level jet occurs most often in the core and warm sector with mean maximum wind speeds of 28.3 and 21.7 m s−1, comparable to previous studies, although with heights approximately 300 m lower than previously reported. The core exhibits characteristics most favorable for adiabatic lifting to saturation by the California coastal range. On average, stability in the core is moist neutral, with considerable variability around the mean. A relaxed squared moist Brunt–Väisälä frequency threshold shows ~8%–12% of core profiles exhibiting near-moist neutrality. The vertical distribution of IVT, which modulates orographic precipitation, varied across AR sectors, with 75% of IVT residing below 3115 m in the core.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Cobb, accobb@ucsd.edu
Save
  • American Meteorological Society, 2019: Atmospheric river. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Atmospheric_river.

  • Brands, S., J. M. Gutiérrez, and D. San-Martín, 2017: Twentieth-century atmospheric river activity along the west coasts of Europe and North America: Algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Climate Dyn., 48, 27712795, https://doi.org/10.1007/s00382-016-3095-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K., and C. Pardoe, 1973: Structure of low-level jet streams ahead of mid-latitude cold fronts. Quart. J. Roy. Meteor. Soc., 99, 619638, https://doi.org/10.1002/qj.49709942204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrick, R., and C. F. Mass, 2019: An evaluation of simulated precipitation characteristics during OLYMPEX. J. Hydrometeor., 20, 11471164, https://doi.org/10.1175/JHM-D-18-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, A. Martin, N. Gaggini, J. R. Spackman, P. J. Neiman, J. J. Rutz, and R. Pierce, 2017: Forecasting atmospheric rivers during CalWater 2015. Bull. Amer. Meteor. Soc., 98, 449459, https://doi.org/10.1175/BAMS-D-15-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., O. Martinez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeor., 20, 11831196, https://doi.org/10.1175/JHM-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demirdjian, R., J. R. Norris, A. Martin, and F. M. Ralph, 2020: Dropsonde observations of the ageostrophy within the pre-cold-frontal low-level jet associated with atmospheric rivers. Mon. Wea. Rev., 148, 13891406, https://doi.org/10.1175/MWR-D-19-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, https://doi.org/10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, https://doi.org/10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., M. Tsukernik, K. Claes, M. F. Ralph, W. D. Neff, and N. P. Van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41, 61996206, https://doi.org/10.1002/2014GL060881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2017: Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. J. Geophys. Res. Atmos., 122, 55565581, https://doi.org/10.1002/2016JD026174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, and F. M. Ralph, 2018: An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. J. Hydrometeor., 19, 321337, https://doi.org/10.1175/JHM-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, and F. M. Ralph, 2020: A multimodel evaluation of the water vapor budget in atmospheric rivers. Ann. N. Y. Acad. Sci., 1472, 139154, https://doi.org/10.1111/nyas.14368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, C. W., and J. M. Cordeira, 2017: Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over north coastal California. Geophys. Res. Lett., 44, 90489058, https://doi.org/10.1002/2017GL074179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., K. M. Mahoney, P. J. Neiman, B. J. Moore, M. Alexander, and F. M. Ralph, 2014: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. J. Hydrometeor., 15, 19541974, https://doi.org/10.1175/JHM-D-13-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., Y. Zhou, and M. A. Alexander, 2019: Changes in atmospheric rivers and moisture transport over the Northeast Pacific and western North America in response to ENSO diversity. Climate Dyn., 52, 73757388, https://doi.org/10.1007/s00382-017-3598-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, H. Binder, M. Böttcher, H. Joos, E. Madonna, G. Pante, and M. Sprenger, 2018: The relationship between warm conveyor belts, tropical moisture exports and atmospheric rivers. Geophysical Research Abstracts, Vol. 20, Abstract EGU2018-4362, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-4362.pdf.

  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974, https://doi.org/10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamjiri, M. A., F. M. Ralph, and M. D. Dettinger, 2020: Recent changes in U.S. extreme 3-day precipitation using the R-CAT scale. J. Hydrometeor., 21, 12071221, https://doi.org/10.1175/JHM-D-19-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., M. J. Rodwell, D. S. Richardson, F. M. Ralph, J. D. Doyle, C. A. Reynolds, V. Tallapragada, and F. Pappenberger, 2018: The gauging and modeling of rivers in the sky. Geophys. Res. Lett., 45, 78287834, https://doi.org/10.1029/2018GL079019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., A. Beljaars, D. S. Richardson, M. J. Rodwell, and F. Pappenberger, 2019: A forecast evaluation of planetary boundary layer height over the ocean. J. Geophys. Res. Atmos., 124, 49754984, https://doi.org/10.1029/2019JD030454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and Coauthors, 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M., and R. Rotunno, 2005: Simulations of moist nearly neutral flow over a ridge. J. Atmos. Sci., 62, 14101427, https://doi.org/10.1175/JAS3410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales, A., H. Morrison, and D. J. Posselt, 2018: Orographic precipitation response to microphysical parameter perturbations for idealized moist nearly neutral flow. J. Atmos. Sci., 75, 19331953, https://doi.org/10.1175/JAS-D-17-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. White, D. Kingsmill, and P. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. Hughes, B. J. Moore, F. M. Ralph, and E. M. Sukovich, 2013a: Sierra barrier jets, atmospheric rivers, and precipitation characteristics in Northern California: A composite perspective based on a network of wind profilers. Mon. Wea. Rev., 141, 42114233, https://doi.org/10.1175/MWR-D-13-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. Hughes, K. M. Mahoney, J. M. Cordeira, and M. D. Dettinger, 2013b: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, https://doi.org/10.1175/JHM-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakley, N. S., J. T. Lancaster, M. L. Kaplan, and F. M. Ralph, 2017: Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of southern California. Nat. Hazards, 88, 327354, https://doi.org/10.1007/s11069-017-2867-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OFCM, 2019: National Winter Season Operations Plan (NWSOP). Office of the Federal Coordinator for Meteorological Services and Supporting Research, 84 pp., www.ofcm.gov/publications/nwsop/2019_nwsop.pdf.

  • Ralph, F. M., and M. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2014: A vision for future observations for western US extreme precipitation and flooding. J. Contemp. Water Res. Educ., 153, 1632, https://doi.org/10.1111/j.1936-704X.2014.03176.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, https://doi.org/10.1175/BAMS-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017a: Atmospheric rivers emerge as a global science and applications focus. Bull. Amer. Meteor. Soc., 98, 19691973, https://doi.org/10.1175/BAMS-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017b: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2020: West Coast forecast challenges and development of atmospheric river reconnaissance. Bull. Amer. Meteor. Soc., 101, E1357E1377, https://doi.org/10.1175/BAMS-D-19-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. D. Doyle, F. M. Ralph, and R. Demirdjian, 2019: Adjoint sensitivity of North Pacific atmospheric river forecasts. Mon. Wea. Rev., 147, 18711897, https://doi.org/10.1175/MWR-D-18-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, J., 1956: The physical and dynamical problems of orographic rain. Weather, 11, 375381, https://doi.org/10.1002/j.1477-8696.1956.tb00264.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Y. Zhang, A. Beljaars, J.-C. Golaz, A. R. Jacobson, and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, https://doi.org/10.1029/2012JD018143.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, https://doi.org/10.1175/2009MWR2939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Unidata, 2017: Metpy: A Python package for meteorological data. UCAR/Unidata, accessed 1 January 2020, https://doi.org/10.5065/D6WW7G29.

    • Crossref
    • Export Citation
  • Vaisala, 2017: Dropsonde RD94. RD94 datasheet, Vaisala, 2 pp., https://www.vaisala.com/sites/default/files/documents/RD94-Datasheet-B210936EN-B.pdf.

  • Vaisala, 2018: Dropsonde RD41. RD41 datasheet, Vaisala, 2 pp., https://www.vaisala.com/sites/default/files/documents/RD41-Datasheet-B211706EN.pdf.

  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, 965 pp.

  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Vol. 92, Elsevier, 504 pp.

  • Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, https://doi.org/10.1175/WAF-D-13-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and B. F. Smull, 2000: Airborne Doppler observations of a landfalling cold front upstream of steep coastal orography. Mon. Wea. Rev., 128, 15771603, https://doi.org/10.1175/1520-0493(2000)128<1577:ADOOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 18141823, https://doi.org/10.1029/2018GL079071.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 549 0 0
Full Text Views 850 345 21
PDF Downloads 689 207 19