Improving the Representation of Subtropical Boundary Layer Clouds in the NASA GEOS Model with the Eddy-Diffusivity/Mass-Flux Parameterization

Kay Suselj Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Kay Suselj in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8419-2198
,
Joao Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Joao Teixeira in
Current site
Google Scholar
PubMed
Close
,
Marcin J. Kurowski Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Marcin J. Kurowski in
Current site
Google Scholar
PubMed
Close
, and
Andrea Molod NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Andrea Molod in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A systematic underestimation of subtropical planetary boundary layer (PBL) stratocumulus clouds by the GEOS model has been significantly improved by a new eddy-diffusivity/mass-flux (EDMF) parameterization. The EDMF parameterization represents the subgrid-scale transport in the dry and moist parts of the PBL in a unified manner and it combines an adjusted eddy-diffusivity PBL scheme from GEOS with a stochastic multiplume mass-flux model. The new EDMF version of the GEOS model is first compared against the CONTROL version in a single-column model (SCM) framework for two benchmark cases representing subtropical stratocumulus and shallow cumulus clouds, and validated against large-eddy simulations. Global simulations are performed and compared against observations and reanalysis data. The results show that the EDMF version of the GEOS model produces more realistic subtropical PBL clouds. The EDMF improvements first detected in the SCM framework translate into similar improvements of the global GEOS model.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kay Suselj, kay.suselj@jpl.nasa.gov

Abstract

A systematic underestimation of subtropical planetary boundary layer (PBL) stratocumulus clouds by the GEOS model has been significantly improved by a new eddy-diffusivity/mass-flux (EDMF) parameterization. The EDMF parameterization represents the subgrid-scale transport in the dry and moist parts of the PBL in a unified manner and it combines an adjusted eddy-diffusivity PBL scheme from GEOS with a stochastic multiplume mass-flux model. The new EDMF version of the GEOS model is first compared against the CONTROL version in a single-column model (SCM) framework for two benchmark cases representing subtropical stratocumulus and shallow cumulus clouds, and validated against large-eddy simulations. Global simulations are performed and compared against observations and reanalysis data. The results show that the EDMF version of the GEOS model produces more realistic subtropical PBL clouds. The EDMF improvements first detected in the SCM framework translate into similar improvements of the global GEOS model.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kay Suselj, kay.suselj@jpl.nasa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., 2005: An integrated turbulence scheme for boundary layers with shallow cumulus applied to pollutant transport. J. Appl. Meteor., 44, 14361452, https://doi.org/10.1175/JAM2284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J. P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234258, https://doi.org/10.1002/jame.20025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316337, https://doi.org/10.1002/jame.20019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheinet, S., 2003: A multiple mass-flux parameterization for the surface-generated convection. Part I: Dry plumes. J. Atmos. Sci., 60, 23132327, https://doi.org/10.1175/1520-0469(2003)060<2313:AMMPFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762772, https://doi.org/10.1175/1520-0469(1992)049<0762:ASRMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 1994: A thermal infrared radiation parameterization for atmospheric studies. Technical report series on global modeling and data assimilation, Tech. Rep. NASA/TM-2001-104606, Vol. 19, 68 pp., https://ntrs.nasa.gov/api/citations/20010072848/downloads/20010072848.pdf.

  • Deardorff, J. W., 1966: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci., 23, 503506, https://doi.org/10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, H. Jonker, and Y. de Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436, https://doi.org/10.1175/MWR-D-11-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ertel, H., 1942: Der vertikale Turbulenz-Wärmestrom in der Atmosphäre. Meteor. Z., 59, 16901698.

  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratospheree. J. Atmos. Sci., 51, 22382245, https://doi.org/10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002a: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002b: A PDF-based model for boundary layer clouds. Part II: Model results. J. Atmos. Sci., 59, 35523571, https://doi.org/10.1175/1520-0469(2002)059<3552:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., J. C. Golaz, L. J. Donner, P. Ginoux, and R. S. Hemler, 2014: Multivariate probability density functions with dynamics in the GFDL atmospheric general circulation model: Global tests. J. Climate, 27, 20872108, https://doi.org/10.1175/JCLI-D-13-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and C. S. Bretherton, 2019: TKE-based moist eddy-diffusivity mass-flux (EDMF) parameterization for vertical turbulent mixing. Wea. Forecasting, 34, 869886, https://doi.org/10.1175/waf-d-18-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., M. L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalmus, P., M. Lebsock, and J. Teixeira, 2014: Observational boundary layer energy and water budgets of the stratocumulus-to-cumulus transition. J. Climate, 27, 91559170, https://doi.org/10.1175/JCLI-D-14-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, and H. Rodhe, 2008: Cloud radiative forcing of subtropical low level clouds in global models. Climate Dyn., 30, 779788, https://doi.org/10.1007/s00382-007-0322-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, S. Cardoso, J. Teixeira, and S. Paradise, 2010: Subtropical cloud-regime transitions: Boundary layer depth and cloud-top height evolution in models and observations. J. Appl. Meteor. Climatol., 49, 18451858, https://doi.org/10.1175/2010JAMC2338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhler, M., M. Ahlgrimm, and A. Beljaars, 2011: Unified treatment of dry convective and stratocumulus-topped boundary layers in the ECMWF model. Quart. J. Roy. Meteor. Soc., 137, 4357, https://doi.org/10.1002/qj.713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., H. T. Thrastarson, K. Suselj, and J. Teixeira, 2019a: Towards unifying the planetary boundary layer and shallow convection in CAM5 with the eddy-diffusivity/mass-flux approach. Atmosphere, 10, 484, https://doi.org/10.3390/atmos10090484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., K. Suselj, and W. W. Grabowski, 2019b: Is shallow convection sensitive to environmental heterogeneities? Geophys. Res. Lett., 46, 17851793, https://doi.org/10.1029/2018GL080847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M., and H. Su, 2014: Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals. J. Geophys. Res. Atmos., 119, 89628979, https://doi.org/10.1002/2014JD021568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, https://doi.org/10.1038/ngeo1375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J., and J.-F. Geleyn, 1982: A short history of the PBL parameterization at ECMWF. ECMWF Workshop Planetary Boundary Layer Parameterization, Shinfield Park, Reading, ECMWF, 59–90, https://www.ecmwf.int/node/10845.

  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical pacific circulation: A coupled ocean-atmosphere GCM study. J. Climate, 9, 16351645, https://doi.org/10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., and J. Teixeira, 2019: Sensitivity to physical and numerical aspects of large-eddy simulation of stratocumulus. Mon. Wea. Rev., 147, 26212639, https://doi.org/10.1175/MWR-D-18-0294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011a: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 44014430, https://doi.org/10.1109/TGRS.2011.2144602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. J. Suarez, J. Bacmeister I.-S. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. Tech. Rep. Series on Global Modeling and Data Assimilation, Tech. Rep. NASA Tech. Memo. 104606, Vol. 28, NASA, 117 pp.

  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., and Coauthors, 2020: GEOS-S2S version 2: The GMAO high-resolution coupled model and assimilation system for seasonal prediction. J. Geophys. Res. Atmos., 125, e2019JD031767, https://doi.org/10.1029/2019JD031767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., 2009: A dual mass flux framework for boundary layer convection. Part II: Clouds. J. Atmos. Sci., 66, 14891506, https://doi.org/10.1175/2008JAS2636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., A. P. Siebesma, G. Lenderink, and M. Holtslag, 2004: An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon. Wea. Rev., 132, 25252538, https://doi.org/10.1175/MWR2776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., M. Köhler, and A. C. M. Beljaars, 2009: A dual mass flux framework for boundary layer convection. Part I: Transport. J. Atmos. Sci., 66, 14651487, https://doi.org/10.1175/2008JAS2635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pergaud, J., V. Masson, S. Malardel, and F. Couvreux, 2009: A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound.-Layer Meteor., 132, 83106, https://doi.org/10.1007/s10546-009-9388-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, G. Lambert, T. Li, D. Halpern, N.-C. Lau, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, C., and F. Hourdin, 2008: A thermal plume model for the convective boundary layer: Representation of cumulus clouds. J. Atmos. Sci., 65, 407425, https://doi.org/10.1175/2007JAS2256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2012: On the equivalence of two schemes for convective momentum transport. J. Atmos. Sci., 69, 34913500, https://doi.org/10.1175/JAS-D-12-068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, https://doi.org/10.1175/2009JAS3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. Teixeira, 2000: An advection-diffusion scheme for the convective boundary layer: Description and 1D-results. 14th Symp. on Boundary Layer Turbulence, Aspen, CO, Amer. Meteor. Soc., 133–136.

  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., P. Miranda, A. P. Siebesma, and J. Teixeira, 2004: An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130, 33653383, https://doi.org/10.1256/qj.03.223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, https://doi.org/10.1175/JCLI-3243.1.

  • Suhas, E., and G. J. Zhang, 2014: Evaluation of trigger functions for convective parameterization schemes using observations. J. Climate, 27, 76477666, https://doi.org/10.1175/JCLI-D-13-00718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., J. Teixeira, and G. Matheou, 2012: Eddy diffusivity/mass flux and shallow cumulus boundary layer: An updraft PDF multiple mass flux scheme. J. Atmos. Sci., 69, 15131533, https://doi.org/10.1175/JAS-D-11-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., J. Teixeira, and D. Chung, 2013: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. J. Atmos. Sci., 70, 19291953, https://doi.org/10.1175/JAS-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., T. F. Hogan, and J. Teixeira, 2014: Implementation of a stochastic eddy-diffusivity/mass-flux parameterization into the navy global environmental model. Wea. Forecasting, 29, 13741390, https://doi.org/10.1175/WAF-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., M. J. Kurowski, and J. Teixeira, 2019a: On the factors controlling the development of shallow convection in eddy-diffusivity/mass-flux models. J. Atmos. Sci., 76, 433456, https://doi.org/10.1175/JAS-D-18-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., M. J. Kurowski, and J. Teixeira, 2019b: A unified eddy-diffusivity/mass-flux approach for modeling atmospheric convection. J. Atmos. Sci., 76, 25052537, https://doi.org/10.1175/JAS-D-18-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., D. Posselt, M. Smalley, M. Lebsock, and J. Teixeira, 2020: A new methodology for observation-based parameterization development. Mon. Wea. Rev., 148, 41594184, https://doi.org/10.1175/MWR-D-20-0114.1.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., 1999: Simulation of fog with the ECMWF prognostic cloud scheme. Quart. J. Roy. Meteor. Soc., 125, 529552, https://doi.org/10.1002/qj.49712555409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and A. P. Siebesma, 2000: A mass flux/K-diffusion approach to the parameterization of the convective boundary layer: Global model results. 14th Symp. on Boundary Layers Turbulence, Aspen, CO, Amer. Meteor. Soc., 231–234.

  • Teixeira, J., and S. Cheinet, 2004: A simple mixing length formulation for the eddy-diffusivity parameterization of dry convection. Bound.-Layer Meteor., 110, 435453, https://doi.org/10.1023/B:BOUN.0000007230.96303.0d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458, https://doi.org/10.1175/BAMS-89-4-453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2011: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI). J. Climate, 24, 52235256, https://doi.org/10.1175/2011JCLI3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 87038718, https://doi.org/10.1029/96JC01751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witek, M. L., J. Teixeira, and G. Matheou, 2011: An integrated TKE-based eddy diffusivity/mass flux boundary layer closure for the dry convective boundary layer. J. Atmos. Sci., 68, 15261540, https://doi.org/10.1175/2011JAS3548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, E., H. Yang, J. Kleissl, K. Suselj, M. J. Kurowski, and J. Teixeira, 2020: On the parameterization of convective downdrafts for marine stratocumulus clouds. Mon. Wea. Rev., 148, 19311950, https://doi.org/10.1175/MWR-D-19-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Coauthors, 2013: CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. J. Adv. Model. Earth Syst., 5, 826842, https://doi.org/10.1002/2013MS000246.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 220 0 0
Full Text Views 364 113 17
PDF Downloads 320 87 9