Near-Ground Effects of Wind Turbines: Observations and Physical Mechanisms

Sicheng Wu Center for Research in Wind, University of Delaware, Newark, Delaware

Search for other papers by Sicheng Wu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1718-067X
and
Cristina L. Archer Center for Research in Wind, University of Delaware, Newark, Delaware

Search for other papers by Cristina L. Archer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7837-7575
Restricted access

Abstract

Wind turbines generate wakes, which can potentially influence the local microclimate near the ground. To verify and quantify such effects, the Vertical Enhanced Mixing (VERTEX) field campaign was conducted in late summer 2016 to measure near-surface turbulent fluxes, wind speed, temperature, and moisture under and outside of the wake of an operational wind turbine in Lewes, Delaware. We found that, in the presence of turbine wakes from a single wind turbine, friction velocity, turbulent kinetic energy, and wind speed were reduced near the ground under the wake, while turbulent heat flux was not significantly affected by the wake. The observed near-ground temperature changes were <0.4°C in magnitude. Near-ground temperature changes due to the wake correlated well with the temperature lapse rate between hub height and the ground, with warming observed during stable and neutral conditions and cooling during unstable conditions. Of the two properties that define a wake (i.e., wind speed deficit and turbulence), the wind speed deficit dominates the surface response, while the wake turbulence remains aloft and hardly ever reaches the ground. We propose that the mechanism that drives changes in near-ground temperature in the presence of turbine wakes is the vertical convergence of turbulent heat flux below hub height. Above hub height, turbulence and turbulent heat flux are enhanced; near the ground, turbulence is reduced and turbulent heat flux is unchanged. These conditions cause an increase (during stable/neutral stability) or decrease (during unstable stability) in heat flux convergence, ultimately resulting in warming or cooling near the ground, respectively.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cristina L. Archer, carcher@udel.edu

Abstract

Wind turbines generate wakes, which can potentially influence the local microclimate near the ground. To verify and quantify such effects, the Vertical Enhanced Mixing (VERTEX) field campaign was conducted in late summer 2016 to measure near-surface turbulent fluxes, wind speed, temperature, and moisture under and outside of the wake of an operational wind turbine in Lewes, Delaware. We found that, in the presence of turbine wakes from a single wind turbine, friction velocity, turbulent kinetic energy, and wind speed were reduced near the ground under the wake, while turbulent heat flux was not significantly affected by the wake. The observed near-ground temperature changes were <0.4°C in magnitude. Near-ground temperature changes due to the wake correlated well with the temperature lapse rate between hub height and the ground, with warming observed during stable and neutral conditions and cooling during unstable conditions. Of the two properties that define a wake (i.e., wind speed deficit and turbulence), the wind speed deficit dominates the surface response, while the wake turbulence remains aloft and hardly ever reaches the ground. We propose that the mechanism that drives changes in near-ground temperature in the presence of turbine wakes is the vertical convergence of turbulent heat flux below hub height. Above hub height, turbulence and turbulent heat flux are enhanced; near the ground, turbulence is reduced and turbulent heat flux is unchanged. These conditions cause an increase (during stable/neutral stability) or decrease (during unstable stability) in heat flux convergence, ultimately resulting in warming or cooling near the ground, respectively.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cristina L. Archer, carcher@udel.edu
Save
  • Archer, C. L., B. A. Colle, D. L. Veron, F. Veron, and M. J. Sienkiewicz, 2016: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast. J. Geophys. Res. Atmos., 121, 88698885, https://doi.org/10.1002/2016JD024896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., S. Wu, A. Vasel-Be-Hagh, J. F. Brodie, R. Delgado, A. St. Pé, S. Oncley, and S. Semmer, 2019: The vertex field campaign: Observations of near-ground effects of wind turbine wakes. J. Turbul., 20, 6492, https://doi.org/10.1080/14685248.2019.1572161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., S. Wu, Y. Ma, and P. A. Jiménez, 2020: Two corrections for turbulent kinetic energy generated by wind farms in the WRF Model. Mon. Wea. Rev., 148, 48234835, https://doi.org/10.1175/MWR-D-20-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, A., R. R. Burton, S. E. Lee, S. Mobbs, N. Ostle, V. Smith, S. Waldron, and J. Whitaker, 2016: Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environ. Res. Lett., 11, 044024, https://doi.org/10.1088/1748-9326/11/4/044024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and J. J. Traiteur, 2010: Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. USA, 107, 17 89917 904, https://doi.org/10.1073/pnas.1000493107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., S. W. Pacala, and R. L. Walko, 2004: Can large wind farms affect local meteorology? J. Geophys. Res., 109, D19101, https://doi.org/10.1029/2004JD004763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrie, D. B., and D. B. Kirk-Davidoff, 2010: Weather response to a large wind turbine array. Atmos. Chem. Phys., 10, 769775, https://doi.org/10.5194/acp-10-769-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and Coauthors, 2010: Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Oceanic Technol., 27, 13021317, https://doi.org/10.1175/2010JTECHA1398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodini, N., D. Zardi, and J. K. Lundquist, 2017: Three-dimensional structure of wind turbine wakes as measured by scanning lidar. Atmos. Meas. Tech., 10, 28812896, https://doi.org/10.5194/amt-10-2881-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calaf, M., C. Meneveau, and J. Meyers, 2010: Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids, 22, 015110, https://doi.org/10.1063/1.3291077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calaf, M., M. B. Parlange, and C. Meneveau, 2011: Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Phys. Fluids, 23, 126603, https://doi.org/10.1063/1.3663376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamorro, L. P., and F. Porté-Agel, 2010: Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study. Bound.-Layer Meteor., 136, 515533, https://doi.org/10.1007/s10546-010-9512-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., 2015: Climate impacts of large-scale wind farms as parameterized in a global climate model. J. Climate, 28, 61606180, https://doi.org/10.1175/JCLI-D-14-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., 2016: Notes on using the mesoscale wind farm parameterization of Fitch et al. (2012) in WRF. Wind Energy, 19, 17571758, https://doi.org/10.1002/we.1945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 30173038, https://doi.org/10.1175/MWR-D-11-00352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghaisas, N., C. Archer, S. Xie, S. Wu, and E. Maguire, 2017: Evaluation of layout and atmospheric stability effects in wind farms using large-eddy simulation. Wind Energy, 20, 12271240, https://doi.org/10.1002/we.2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Harris, R. A., L. Zhou, and G. Xia, 2014: Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sens., 6, 12 23412 246, https://doi.org/10.3390/rs61212234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., and C. L. Archer, 2012: Saturation wind power potential and its implications for wind energy. Proc. Natl. Acad. Sci. USA, 109, 15 67915 684, https://doi.org/10.1073/pnas.1208993109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keith, D. W., J. F. DeCarolis, D. C. Denkenberger, D. H. Lenschow, S. L. Malyshev, S. Pacala, and P. J. Rasch, 2004: The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. USA, 101, 16 11516 120, https://doi.org/10.1073/pnas.0406930101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., and F. Porté-Agel, 2011: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids, 23, 065101, https://doi.org/10.1063/1.3589857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. M., and D. W. Keith, 2018: Climatic impacts of wind power. Joule, 2, 26182632, https://doi.org/10.1016/j.joule.2018.09.009.

  • Moravec, D., V. Barták, V. Puš, and J. Wild, 2018: Wind turbine impact on near-ground air temperature. Renewable Energy, 123, 627633, https://doi.org/10.1016/j.renene.2018.02.091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., C. A. Friehe, J. C. Larue, J. A. Businger, E. C. Itsweire, and S. S. Chang, 1996: Surface layer fluxes profiles and turbulence measurements over uniform terrain under near neutral conditions. J. Atmos. Sci., 53, 10291044, https://doi.org/10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and T. J. Shepherd, 2018: The influence of real-world wind turbine deployments on local to mesoscale climate. J. Geophys. Res. Atmos., 123, 58045826, https://doi.org/10.1029/2017JD028114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., T. J. Shepherd, R. J. Barthelmie, A. N. Hahmann, and P. Volker, 2019: Wind farm wakes simulated using WRF. J. Phys. Conf. Ser., 1256, 012025, https://doi.org/10.1088/1742-6596/1256/1/012025..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewski, D. A., and Coauthors, 2013: Crop Wind Energy Experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Amer. Meteor. Soc., 94, 655672, https://doi.org/10.1175/BAMS-D-11-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewski, D. A., E. S. Takle, J. K. Lundquist, J. H. Prueger, R. L. Pfeiffer, J. L. Hatfield, K. K. Spoth, and R. K. Doorenbos, 2014: Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm. Agric. For. Meteor., 194, 175187, https://doi.org/10.1016/j.agrformet.2014.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewski, D. A., E. S. Takle, J. H. Prueger, and R. K. Doorenbos, 2016: Toward understanding the physical link between turbines and microclimate impacts from in situ measurements in a large wind farm. J. Geophys. Res. Atmos., 121, 13 39213 414, https://doi.org/10.1002/2016JD025297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., and T. R. Oke, 1995: Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J. Atmos. Sci., 52, 18631874, https://doi.org/10.1175/1520-0469(1995)052<1863:REOTTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schotanus, P., F. T. Nieuwstadt, and H. A. De Bruin, 1983: Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteor., 26, 8193, https://doi.org/10.1007/BF00164332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sievers, J., T. Papakyriakou, S. E. Larsen, M. M. Jammet, S. Rysgaard, M. K. Sejr, and L. L. Sørensen, 2015: Estimating surface fluxes using eddy covariance and numerical ogive optimization. Atmos. Chem. Phys., 15, 20812103, https://doi.org/10.5194/acp-15-2081-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. M., R. J. Barthelmie, and S. C. Pryor, 2013: In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles. Environ. Res. Lett., 8, 034006, https://doi.org/10.1088/1748-9326/8/3/034006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

    • Crossref
    • Export Citation
  • Sun, H., Y. Luo, Z. Zhao, and R. Chang, 2018: The impacts of Chinese wind farms on climate. J. Geophys. Res. Atmos., 123, 51775187, https://doi.org/10.1029/2017JD028028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volker, P. J., J. Badger, A. N. Hahmann, and S. Ott, 2015: The explicit wake parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF. Geosci. Model Dev., 8, 37153731, https://doi.org/10.5194/gmd-8-3715-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. G. Prinn, 2010: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys., 10, 20532061, https://doi.org/10.5194/acp-10-2053-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and R. J. Barthelmie, 2015: Wind turbine wake detection with a single Doppler wind lidar. J. Phys. Conf. Ser., 625, 012017, https://doi.org/10.1088/1742-6596/625/1/012017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, G., L. Zhou, J. M. Freedman, S. B. Roy, R. A. Harris, and M. C. Cervarich, 2016: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dyn., 46, 21792196, https://doi.org/10.1007/s00382-015-2696-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, G., L. Zhou, J. R. Minder, R. G. Fovell, and P. A. Jimenez, 2019: Simulating impacts of real-world wind farms on land surface temperature using the WRF model: Physical mechanisms. Climate Dyn., 53, 17231739, https://doi.org/10.1007/s00382-019-04725-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and C. L. Archer, 2015: Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy, 18, 18151838, https://doi.org/10.1002/we.1792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and C. L. Archer, 2017: A numerical study of wind-turbine wakes for three atmospheric stability conditions. Bound.-Layer Meteor., 165, 87112, https://doi.org/10.1007/s10546-017-0259-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., C. D. Markfort, and F. Porté-Agel, 2013: Experimental study of the impact of large-scale wind farms on land-atmosphere exchanges. Environ. Res. Lett., 8, 015002, https://doi.org/10.1088/1748-9326/8/1/015002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., Y. Tian, S. Baidya Roy, C. Thorncroft, L. F. Bosart, and Y. Hu, 2012: Impacts of wind farms on land surface temperature. Nat. Climate Change, 2, 539543, https://doi.org/10.1038/nclimate1505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., Y. Tian, S. Baidya Roy, Y. Dai, and H. Chen, 2013: Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas. Climate Dyn., 41, 307326, https://doi.org/10.1007/s00382-012-1485-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 481 0 0
Full Text Views 1157 524 46
PDF Downloads 1025 472 28