Evaluation of the Surface Wind Field over Land in WRF Simulations of Hurricane Wilma (2005). Part I: Model Initialization and Simulation Validation

David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
,
Brian D. McNoldy Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian D. McNoldy in
Current site
Google Scholar
PubMed
Close
, and
Jimmy Yunge Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Jimmy Yunge in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although global and regional dynamical models are used to predict the tracks and intensities of hurricanes over the ocean, these models are not currently used to predict the wind field and other impacts over land. This two-part study performs detailed evaluations of the near-surface, overland wind fields produced in simulations of Hurricane Wilma (2005) as it traveled across South Florida. This first part describes the production of two high-resolution simulations using the Weather Research and Forecasting (WRF) Model, using different boundary layer parameterizations available in WRF: the Mellor–Yamada–Janjić (MYJ) scheme and the Yonsei University (YSU) scheme. Initial conditions from the Global Forecasting System are manipulated with a vortex-bogusing technique to modify the initial intensity, size, and location of the cyclone. It is found possible through trial and error to successfully produce simulations using both the YSU and MYJ schemes that closely reproduce the track, intensity, and size of Wilma at landfall. For both schemes the storm size and structure also show good agreement with the wind fields diagnosed by H*WIND and the Tropical Cyclone Surface Wind Analysis. Both over water and over land, the YSU scheme has stronger winds over larger areas than does the MYJ, but the surface winds are more reduced in areas of greater surface roughness, particularly in urban areas. Both schemes produced very similar inflow angles over land and water. The overland wind fields are examined in more detail in the second part of this study.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. David S. Nolan, dnolan@rsmas.miami.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-20-0201.1.

Abstract

Although global and regional dynamical models are used to predict the tracks and intensities of hurricanes over the ocean, these models are not currently used to predict the wind field and other impacts over land. This two-part study performs detailed evaluations of the near-surface, overland wind fields produced in simulations of Hurricane Wilma (2005) as it traveled across South Florida. This first part describes the production of two high-resolution simulations using the Weather Research and Forecasting (WRF) Model, using different boundary layer parameterizations available in WRF: the Mellor–Yamada–Janjić (MYJ) scheme and the Yonsei University (YSU) scheme. Initial conditions from the Global Forecasting System are manipulated with a vortex-bogusing technique to modify the initial intensity, size, and location of the cyclone. It is found possible through trial and error to successfully produce simulations using both the YSU and MYJ schemes that closely reproduce the track, intensity, and size of Wilma at landfall. For both schemes the storm size and structure also show good agreement with the wind fields diagnosed by H*WIND and the Tropical Cyclone Surface Wind Analysis. Both over water and over land, the YSU scheme has stronger winds over larger areas than does the MYJ, but the surface winds are more reduced in areas of greater surface roughness, particularly in urban areas. Both schemes produced very similar inflow angles over land and water. The overland wind fields are examined in more detail in the second part of this study.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. David S. Nolan, dnolan@rsmas.miami.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-20-0201.1.

Save
  • Alapaty, K., D. Nigoyi, F. Chen, P. Pyle, A. Chandresekar, and N. Seaman, 2008: Development of the flux-adjusting surface data assimilation system for mesoscale models. J. Appl. Meteor. Climatol., 47, 23312350, https://doi.org/10.1175/2008JAMC1831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balderrama, J. A., and Coauthors, 2011: The Florida Coastal Monitoring Program (FCMP): A review. J. Wind Eng. Ind. Aerodyn., 99, 979995, https://doi.org/10.1016/j.jweia.2011.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J. L., and Coauthors, 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 11091173, https://doi.org/10.1175/2007MWR2074.1.

  • Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 4364, https://doi.org/10.1175/JAS3609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2020: National Hurricane Center Forecast Verification Report: 2019 Hurricane Season. National Hurricane Center, NOAA/NWS/Tropical Prediction Center Doc., 75 pp., https://www.nhc.noaa.gov/verification/pdfs/Verification_2019.pdf.

  • Cao, Y., and R. G. Fovell, 2016: Downslope windstorms of San Diego County. Part I: A case study. Mon. Wea. Rev., 144, 529552, https://doi.org/10.1175/MWR-D-15-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885901, https://doi.org/10.1175/WAF-D-11-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere–ocean–wave models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311318, https://doi.org/10.1175/BAMS-88-3-311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating Southeastern U.S. severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curcic, M., and B. K. Haus, 2020: Revised estimates of ocean surface drag in strong winds. Geophys. Res. Lett., 47, e2020GL087647, https://doi.org/10.1029/202GL087647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, https://doi.org/10.1175/2007MWR2085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Coauthors, 2013: Improvements to the operational tropical cyclone wind speed probability model. Wea. Forecasting, 28, 586602, https://doi.org/10.1175/WAF-D-12-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, A., D. R. Stauffer, J. Dudhia, T. L. Otte, and G. K. Hunter, 2007: Update on analysis nudging FDDA in WRF-ARW. Eighth WRF Users’ Workshop, Boulder, CO, WRF, 4.8, http://www2.mmm.ucar.edu/wrf/users/supports/workshop.html.

  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassne, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., K. Mitchell, Y. Lin, E. Rogers, P. Grunmann, E. Rogers, G. Gayno, and V. Koren, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, https://doi.org/10.1175/JAS3887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giammanco, I. M., J. L. Schroeder, and M. D. Powell, 2013: GPS dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics. Wea. Forecasting, 28, 7799, https://doi.org/10.1175/WAF-D-11-00155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., J.-J. Moncrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation, and cloud schemes in the ECMWF integrated forecasting system. Quart. J. Roy. Meteor. Soc., 126, 26852710, https://doi.org/10.1002/qj.49712656607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, T. Li, and X. Ge, 2011: Performance of a dynamic initialization scheme in the Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26, 650663, https://doi.org/10.1175/WAF-D-10-05051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., K.-S. S. Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, https://doi.org/10.1155/2010/707253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knabb, R. D., J. R. Rhome, and D. P. Brown, 2005: Tropical Cyclone Report: Hurricane Katrina (23–30 August 2005). NHC Tech. Rep. AL122005, 43 pp., https://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf.

  • Knaff, J. A., M. DeMaria, D. A. Molenar, C. R. Sampson, and M. G. Seybold, 2011: An automated, objective, multisatellite platform tropical cyclone surface wind analysis. J. Appl. Meteor. Climatol., 50, 21492166, https://doi.org/10.1175/2011JAMC2673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, R. T. DeMaria, and D. A. Molenar, 2015: Improved tropical cyclone flight-level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, https://doi.org/10.1175/JAMC-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, I., and H. Cheong, 2010: Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional vortex. Mon. Wea. Rev., 138, 13441367, https://doi.org/10.1175/2009MWR2943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for 1951–1910 alterations and additions to the HURDAT. Hurricanes and Typhoons Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Leslie, L. M., and G. J. Holland, 1995: On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56, 101110, https://doi.org/10.1007/BF01022523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, N., J. A. Smith, G. Villarini, T. P. Marchok, and M. Lynn, 2010: Modeling extreme rainfall, winds, and surge from Hurricane Isabel (2003). Wea. Forecasting, 25, 13421361, https://doi.org/10.1175/2010WAF2222349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masters, F. J., P. J. Vickery, P. Bacon, and E. N. Rappaport, 2010: Toward objective, standardized intensity estimates from surface wind speed observations. Bull. Amer. Meteor. Soc., 91, 16651682, https://doi.org/10.1175/2010BAMS2942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 17791805, https://doi.org/10.1175/2010JAS3171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, M., C. Chew, J. T. Reager, R. Shah, and C. Zuffada, 2019: A novel approach to monitoring wetland dynamics using CYGNSS: Everglades case study. Remote Sens. Environ., 233, 111417, https://doi.org/10.1016/j.rse.2019.111417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Hurricane Center, 2018: Costliest U.S. tropical cyclones tables updated. National Hurricane Center Doc., 3 pp., http://www.nhc.noaa.gov/news/UpdatedCostliest.pdf.

  • Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone center identification methods in numerical models. Mon. Wea. Rev., 142, 43264339, https://doi.org/10.1175/MWR-D-14-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and C. Mattocks, 2014: Development and evaluation of the second hurricane nature run using the joint OSSE nature run and the WRF Model. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 91, https://ams.confex.com/ams/31Hurr/webprogram/Paper244751.html.

  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF Model. J. Adv. Model. Earth Syst., 5, 382405, https://doi.org/10.1002/jame.20031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and E. W. Uhlhorn, 2014: On the limits of estimating the maximum wind speeds in hurricanes. Mon. Wea. Rev., 142, 28142837, https://doi.org/10.1175/MWR-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., N. A. Dahl, G. H. Bryan, and R. Rotunno, 2017: Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence. J. Atmos. Sci., 74, 15731597, https://doi.org/10.1175/JAS-D-16-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., B. D. McNoldy, J. Yunge, F. J. Masters, and I. M. Giammanco, 2021: Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part II: Surface winds, inflow angles, and boundary layer profiles. Mon. Wea. Rev., 149, 697713, https://doi.org/10.1175/MWR-D-20-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., E. S. Blake, H. D. Cobb III, and D. P. Roberts, 2006: Tropical Cyclone Report: Hurricane Wilma (15–25 October 2005). NHC Tech. Rep. AL252005, 27 pp., https://www.nhc.noaa.gov/data/tcr/AL252005_Wilma.pdf.

  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and S. H. Houston, 1996: Hurricane Andrew’s landfall in South Florida. Part II: Surface wind fields and potential real-time applications. Wea. Forecasting, 11, 329349, https://doi.org/10.1175/1520-0434(1996)011<0329:HALISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. P. Dodge, and M. L. Black, 1991: The landfall of hurricane Hugo in the Carolinas: Surface wind distribution. Wea. Forecasting, 6, 379399, https://doi.org/10.1175/1520-0434(1991)006<0379:TLOHHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304328, https://doi.org/10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, https://doi.org/10.1016/S0167-6105(98)00131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., D. S. Nolan, and S. J. Majumdar, 2013: A highly configurable vortex initialization method for tropical cyclones. Mon. Wea. Rev., 141, 35563575, https://doi.org/10.1175/MWR-D-12-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., M. L. Black, S. S. Chen, and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64, 18111834, https://doi.org/10.1175/JAS3932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and J. A. Knaff, 2015: A consensus forecast for tropical cyclone gale wind radii. Wea. Forecasting, 30, 13971403, https://doi.org/10.1175/WAF-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., J. S. Goerss, J. A. Knaff, B. R. Strahl, E. M. Fukada, and E. A. Serra, 2018: Tropical cyclone gale wind radii estimates, forecasts, and error forecasts for the Western North Pacific. Wea. Forecasting, 33, 10811092, https://doi.org/10.1175/WAF-D-17-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of the tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, https://doi.org/10.1175/2009JAS2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takagaki, N., S. Komori, N. Suzuki, K. Iwano, T. Kuramoto, S. Shimada, R. Kurose, and K. Takahashi, 2012: Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds. Geophys. Res. Lett., 39, L23604, https://doi.org/10.1029/2012GL053988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and D. S. Nolan, 2012: Observational undersampling and in tropical cyclones and implications for estimated intensity. Mon. Wea. Rev., 140, 825840, https://doi.org/10.1175/MWR-D-11-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, https://doi.org/10.1175/MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., J. A. Sippel, S. Arbaca, L. Zhu, B. Liu, Z. Zhang, A. Mehra, and V. Tallapragada, 2018: Improving NCEP HWRF simulations of surface wind and inflow angle in the eyewall area. Wea. Forecasting, 33, 887898, https://doi.org/10.1175/WAF-D-17-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567585, https://doi.org/10.1175/MWR3308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon. Wea. Rev., 137, 44104419, https://doi.org/10.1175/2009MWR2863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008a: Impact of land surface roughness on surface winds during hurricane landfall. Quart. J. Roy. Meteor. Soc., 134, 10511057, https://doi.org/10.1002/qj.265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008b: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, https://doi.org/10.1029/2007JD009643.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 785 0 0
Full Text Views 1147 432 78
PDF Downloads 977 329 40