Evaluation of the Surface Wind Field over Land in WRF Simulations of Hurricane Wilma (2005). Part II: Surface Winds, Inflow Angles, and Boundary Layer Profiles

David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
,
Brian D. McNoldy Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian D. McNoldy in
Current site
Google Scholar
PubMed
Close
,
Jimmy Yunge Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Jimmy Yunge in
Current site
Google Scholar
PubMed
Close
,
Forrest J. Masters Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida

Search for other papers by Forrest J. Masters in
Current site
Google Scholar
PubMed
Close
, and
Ian M. Giammanco Insurance Institute for Business and Home Safety, Richburg, South Carolina
National Wind Institute, Texas Tech University, Lubbock, Texas

Search for other papers by Ian M. Giammanco in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This is the second of a two-part study that explores the capabilities of a mesoscale atmospheric model to reproduce the near-surface wind fields in hurricanes over land. The Weather Research and Forecasting (WRF) Model is used with two planetary boundary layer parameterizations: the Yonsei University (YSU) and the Mellor–Yamada–Janjić (MYJ) schemes. The first part presented the modeling framework and initial conditions used to produce simulations of Hurricane Wilma (2005) that closely reproduced the track, intensity, and size of its wind field as it passed over South Florida. This part explores how well these simulations can reproduce the winds at fixed points over land by making comparisons with observations from airports and research weather stations. The results show that peak wind speeds are remarkably well reproduced at several locations. Wind directions are evaluated in terms of the inflow angle relative to the storm center, and the simulated inflow angles are generally smaller than observed. Localized peak wind events are associated with vertical vorticity maxima in the boundary layer with horizontal scales of 5–10 km. The boundary layer winds are compared with wind profiles obtained by velocity–azimuth display (VAD) analyses from National Weather Service Doppler radars at Miami and Key West, Florida; results from these comparisons are mixed. Nonetheless the comparisons with surface observations suggest that when short-term hurricane forecasts can sufficiently predict storm track, intensity, and size, they will also be able to provide useful information on extreme winds at locations of interest.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. David S. Nolan, dnolan@rsmas.miami.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-20-0199.1.

Abstract

This is the second of a two-part study that explores the capabilities of a mesoscale atmospheric model to reproduce the near-surface wind fields in hurricanes over land. The Weather Research and Forecasting (WRF) Model is used with two planetary boundary layer parameterizations: the Yonsei University (YSU) and the Mellor–Yamada–Janjić (MYJ) schemes. The first part presented the modeling framework and initial conditions used to produce simulations of Hurricane Wilma (2005) that closely reproduced the track, intensity, and size of its wind field as it passed over South Florida. This part explores how well these simulations can reproduce the winds at fixed points over land by making comparisons with observations from airports and research weather stations. The results show that peak wind speeds are remarkably well reproduced at several locations. Wind directions are evaluated in terms of the inflow angle relative to the storm center, and the simulated inflow angles are generally smaller than observed. Localized peak wind events are associated with vertical vorticity maxima in the boundary layer with horizontal scales of 5–10 km. The boundary layer winds are compared with wind profiles obtained by velocity–azimuth display (VAD) analyses from National Weather Service Doppler radars at Miami and Key West, Florida; results from these comparisons are mixed. Nonetheless the comparisons with surface observations suggest that when short-term hurricane forecasts can sufficiently predict storm track, intensity, and size, they will also be able to provide useful information on extreme winds at locations of interest.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. David S. Nolan, dnolan@rsmas.miami.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-20-0199.1.

Save
  • Alford, A. A., M. I. Biggerstaff, G. D. Carrie, J. L. Schroeder, B. D. Hirth, and S. M. Waugh, 2019: Near-surface maximum winds during the landfall of Hurricane Harvey. Geophys. Res. Lett., 46, 973982, https://doi.org/10.1029/2018GL080013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, A. A., J. A. Zhang, M. I. Biggerstaff, P. Dodge, F. D. Marks, and D. J. Bodine, 2020: Transition of the hurricane boundary layer during the landfall of Hurricane Irene (2011). J. Atmos. Sci., 77, 35093531, https://doi.org/10.1175/JAS-D-19-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balderrama, J. A., and Coauthors, 2011: The Florida Coastal Monitoring Program (FCMP): A review. J. Wind Eng. Ind. Aerodyn., 99, 979995, https://doi.org/10.1016/j.jweia.2011.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. P. Worsnop, J. K. Lundquist, and J. A. Zhang, 2017: A simple method for simulating wind profiles in the boundary layers of tropical cyclones. Bound.-Layer Meteor., 162, 475502, https://doi.org/10.1007/s10546-016-0207-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández-Cabán, P. L., and Coauthors, 2019: Observing Hurricane Harvey’s eyewall at landfall. Bull. Amer. Meteor. Soc., 100, 759775, https://doi.org/10.1175/BAMS-D-17-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giammanco, I. R., J. L. Schroeder, and M. D. Powell, 2013: GPS dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics. Wea. Forecasting, 28, 7799, https://doi.org/10.1175/WAF-D-11-00155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077, https://doi.org/10.1175/MWR-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, C. C. Weiss, D. A. Smith, and M. I. Biggerstaff, 2012: Research radar analysis of the internal boundary layer over Cape Canaveral, Florida, during the landfall of Hurricane Frances (2004). Wea. Forecasting, 27, 13491372, https://doi.org/10.1175/WAF-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, D. A. Molenar, C. R. Sampson, and M. G. Seybold, 2011: An automated, objective, multisatellite platform tropical cyclone surface wind analysis. J. Appl. Meteor. Climatol., 50, 21492166, https://doi.org/10.1175/2011JAMC2673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, R. T. DeMaria, and D. A. Molenar, 2015: Improved tropical cyclone flight-level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, https://doi.org/10.1175/JAMC-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, F. J. Masters, and P. Robinson, 2013: Mapping of near-surface winds in Hurricane Rita using finescale radar, anemometer, and land-use data. Mon. Wea. Rev., 141, 43374349, https://doi.org/10.1175/MWR-D-12-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, N., J. A. Smith, G. Villarini, T. P. Marchok, and M. Lynn, 2010: Modeling extreme rainfall, winds, and surge from Hurricane Isabel (2003). Wea. Forecasting, 25, 13421361, https://doi.org/10.1175/2010WAF2222349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindvall, J., and G. Svensson, 2019: Wind turning in the atmospheric boundary layer over land. Quart. J. Roy. Meteor. Soc., 145, 30743088, https://doi.org/10.1002/qj.3605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. L. Schroeder, P. Dodge, and F. Marks, 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 28712893, https://doi.org/10.1175/2008MWR2273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and Coauthors, 2020: National Oceanic and Atmospheric Administration hurricane forecast improvement project years ten to fifteen strategic plan. National Oceanic and Atmospheric Administration Doc., 83 pp., http://www.hfip.org/documents/HFIP_Strategic_Plan_20190625.pdf.

  • Masters, F. J., P. J. Vickery, P. Bacon, and E. N. Rappaport, 2010: Toward objective, standardized intensity estimates from surface wind speed observations. Bull. Amer. Meteor. Soc., 91, 16651682, https://doi.org/10.1175/2010BAMS2942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Boosinger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 26622673, https://doi.org/10.1175/JAS3508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1986: The structure of a polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64, 913921, https://doi.org/10.2151/jmsj1965.64.6_913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020, https://doi.org/10.1175/1520-0469(2002)059<2989:NTDPTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and E. W. Uhlhorn, 2014: On the limits of estimating the maximum wind speeds in hurricanes. Mon. Wea. Rev., 142, 28142837, https://doi.org/10.1175/MWR-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., B. D. McNoldy, and J. Yunge, 2021: Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part I: Model initialization and simulation validation. Mon. Wea. Rev., 149, 679695, https://doi.org/10.1175/MWR-D-20-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., E. S. Blake, H. D. Cobb III, and D. P. Roberts, 2006: Tropical Cyclone Report: Hurricane Wilma (15–25 October 2005). NHC Tech. Rep. AL252005, 27 pp., https://www.nhc.noaa.gov/data/tcr/AL252005_Wilma.pdf.

  • Powell, M. D., and S. H. Houston, 1996: Hurricane Andrew’s landfall in South Florida. Part II: Surface wind fields and potential real-time applications. Wea. Forecasting, 11, 329349, https://doi.org/10.1175/1520-0434(1996)011<0329:HALISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew’s landfall in South Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304328, https://doi.org/10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, https://doi.org/10.1016/S0167-6105(98)00131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and G. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788, https://doi.org/10.1175/2009BAMS2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2013: On the existence of the logarithmic surface layer in the inner core of hurricanes. Quart. J. Roy. Meteor. Soc., 140, 7281, https://doi.org/10.1002/qj.2121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and G. H. Bryan, 2018: Using simulated dropsondes to understand extreme updrafts and wind speeds in tropical cyclones. Mon. Wea. Rev., 146, 39013925, https://doi.org/10.1175/MWR-D-18-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., J. A. Sippel, S. Arbaca, L. Zhu, B. Liu, Z. Zhang, A. Mehra, and V. Tallapragada, 2018: Improving NCEP HWRF simulations of surface wind and inflow angle in the eyewall area. Wea. Forecasting, 33, 887898, https://doi.org/10.1175/WAF-D-17-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingo, S. M. and K. R. Knupp, 2016: Kinematic structure of mesovortices in the eyewall of Hurricane Ike (2008) derived from ground-based dual-Doppler analysis. Mon. Wea. Rev., 144, 42454263, https://doi.org/10.1175/MWR-D-16-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2018: The role of small-scale vortices in enhancing surface winds and damage in Hurricane Harvey (2017). Mon. Wea. Rev., 146, 713722, https://doi.org/10.1175/MWR-D-17-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea-surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, https://doi.org/10.1029/2007JD009643.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 579 0 0
Full Text Views 858 277 37
PDF Downloads 756 216 24