A Bimodal Diagnostic Cloud Fraction Parameterization. Part I: Motivating Analysis and Scheme Description

Kwinten Van Weverberg Met Office, Exeter, United Kingdom

Search for other papers by Kwinten Van Weverberg in
Current site
Google Scholar
PubMed
Close
,
Cyril J. Morcrette Met Office, Exeter, United Kingdom

Search for other papers by Cyril J. Morcrette in
Current site
Google Scholar
PubMed
Close
,
Ian Boutle Met Office, Exeter, United Kingdom

Search for other papers by Ian Boutle in
Current site
Google Scholar
PubMed
Close
,
Kalli Furtado Met Office, Exeter, United Kingdom

Search for other papers by Kalli Furtado in
Current site
Google Scholar
PubMed
Close
, and
Paul R. Field Met Office, Exeter, United Kingdom

Search for other papers by Paul R. Field in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud fraction parameterizations are beneficial to regional, convection-permitting numerical weather prediction. For its operational regional midlatitude forecasts, the Met Office uses a diagnostic cloud fraction scheme that relies on a unimodal, symmetric subgrid saturation-departure distribution. This scheme has been shown before to underestimate cloud cover and hence an empirically based bias correction is used operationally to improve performance. This first of a series of two papers proposes a new diagnostic cloud scheme as a more physically based alternative to the operational bias correction. The new cloud scheme identifies entrainment zones associated with strong temperature inversions. For model grid boxes located in this entrainment zone, collocated moist and dry Gaussian modes are used to represent the subgrid conditions. The mean and width of the Gaussian modes, inferred from the turbulent characteristics, are then used to diagnose cloud water content and cloud fraction. It is shown that the new scheme diagnoses enhanced cloud cover for a given gridbox mean humidity, similar to the current operational approach. It does so, however, in a physically meaningful way. Using observed aircraft data and ground-based retrievals over the southern Great Plains in the United States, it is shown that the new scheme improves the relation between cloud fraction, relative humidity, and liquid water content. An emergent property of the scheme is its ability to infer skewed and bimodal distributions from the large-scale state that qualitatively compare well against observations. A detailed evaluation and resolution sensitivity study will follow in Part II.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kwinten Van Weverberg, kwinten.vanweverberg@metoffice.gov.uk

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-20-0230.1.

Abstract

Cloud fraction parameterizations are beneficial to regional, convection-permitting numerical weather prediction. For its operational regional midlatitude forecasts, the Met Office uses a diagnostic cloud fraction scheme that relies on a unimodal, symmetric subgrid saturation-departure distribution. This scheme has been shown before to underestimate cloud cover and hence an empirically based bias correction is used operationally to improve performance. This first of a series of two papers proposes a new diagnostic cloud scheme as a more physically based alternative to the operational bias correction. The new cloud scheme identifies entrainment zones associated with strong temperature inversions. For model grid boxes located in this entrainment zone, collocated moist and dry Gaussian modes are used to represent the subgrid conditions. The mean and width of the Gaussian modes, inferred from the turbulent characteristics, are then used to diagnose cloud water content and cloud fraction. It is shown that the new scheme diagnoses enhanced cloud cover for a given gridbox mean humidity, similar to the current operational approach. It does so, however, in a physically meaningful way. Using observed aircraft data and ground-based retrievals over the southern Great Plains in the United States, it is shown that the new scheme improves the relation between cloud fraction, relative humidity, and liquid water content. An emergent property of the scheme is its ability to infer skewed and bimodal distributions from the large-scale state that qualitatively compare well against observations. A detailed evaluation and resolution sensitivity study will follow in Part II.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kwinten Van Weverberg, kwinten.vanweverberg@metoffice.gov.uk

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-20-0230.1.

Save
  • Abel, S. J., and I. A. Boutle, 2012: An improved representation of the rain drop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 21512162, https://doi.org/10.1002/qj.1949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abel, S. J., I. A. Boutle, K. Waite, S. Fox, P. R. A. Brown, and R. Cotton, 2017: The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a Northern Hemisphere cold-air outbreak. J. Atmos. Sci., 74, 22932314, https://doi.org/10.1175/JAS-D-16-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, 2015: Profiles of second- to fourth-order moment of turbulent temperature fluctuations in the convective boundary layer: First measurements with rotational Raman lidar. Atmos. Chem. Phys., 15, 54855500, https://doi.org/10.5194/acp-15-5485-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195211, https://doi.org/10.1002/jame.20018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., and C. J. Morcrette, 2010: Parametrization of area cloud fraction. Atmos. Sci. Lett., 11, 283289, https://doi.org/10.1002/asl.293.

  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014a: Seamless stratocumulus simulations across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014b: Spatial variability of liquid cloud and rain: Observations and microphysical effects. Quart. J. Roy. Meteor. Soc., 140, 583594, https://doi.org/10.1002/qj.2140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., A. Finnenkoetter, A. P. Lock, and H. Wells, 2016: The London model: Forecasting fog at 333 m resolution. Quart. J. Roy. Meteor. Soc., 142, 360371, https://doi.org/10.1002/qj.2656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25 year journey. Bull. Amer. Meteor. Soc., 93, 18651877, https://doi.org/10.1175/BAMS-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, M., and Coauthors, 2020: The first Met Office Unified Model-JULES Regional Atmosphere and Land configuration, RAL1. Geosci. Model Dev., 13, 19992029, https://doi.org/10.5194/gmd-13-1999-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, and T. L. Bell, 1994: The albedo of stratocumulus clouds. J. Atmos. Sci., 51, 24342455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165181, https://doi.org/10.1002/met.1538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, https://doi.org/10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, M., K. L. Johnson, and M. P. Jensen, 2011: The microbase value-added product: A baseline retrieval of cloud microphysical properties. U.S. Department of Energy Tech. Rep. DOE/SC-ARM/TR-095, 34 pp.

    • Crossref
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365, https://doi.org/10.1175/2007JAS2344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. A. Hill, K. Furtado, and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part II: Analytic treatment. Quart. J. Roy. Meteor. Soc., 140, 870880, https://doi.org/10.1002/qj.2175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, K., P. R. Field, I. A. Boutle, C. J. Morcrette, and J. M. Wilkinson, 2016: A physically based subgrid parameterization for the production and maintenance of mixed-phase clouds in a general circulation model. J. Atmos. Sci., 73, 279291, https://doi.org/10.1175/JAS-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griewank, P. J., V. Schemann, and R. A. J. Neggers, 2018: Evaluating and improving a PDF cloud scheme using high-resolution super large domain simulations. J. Adv. Model. Earth Syst., 10, 22452268, https://doi.org/10.1029/2018MS001421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grüetzun, V., J. Quaas, C. J. Morcrette, and F. Ament, 2013: Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing? J. Geophys. Res. Atmos., 118, 10 50710 517, https://doi.org/10.1002/jgrd.50813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, J. K., A. N. Ross, S. B. Vosper, A. P. Lock, and B. C. Jemmett-Smith, 2015: Assessment of valley cold pools and clouds in a very high-resolution numerical weather prediction model. Geosci. Model Dev., 8, 31053117, https://doi.org/10.5194/gmd-8-3105-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: CloudNet—Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, https://doi.org/10.1175/BAMS-88-6-883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The midlatitude continental convective clouds experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2017: Collaborative efforts between the United States and the United Kingdom to advance prediction of high-impact weather. Bull. Amer. Meteor. Soc., 98, 937948, https://doi.org/10.1175/BAMS-D-15-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiemle, C., G. Ehret, A. Giez, K. J. Davis, D. H. Lenschow, and S. P. Oncley, 1997: Estimation of boundary layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL). J. Geophys. Res., 102, 29 18929 203, https://doi.org/10.1029/97JD01112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., R. Pincus, C. Hannay, and K.-M. Xu, 2005: How might a statistical cloud scheme be coupled to a mass-flux convection scheme? J. Geophys. Res., 110, D15S06, https://doi.org/10.1029/2004JD005017.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, and R. Forbes, 2008: Characteristics of high-resolution versions of the Met Office unified model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, https://doi.org/10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., and S. Yoh, 1993: Binormal model of ensemble partial cloudiness. J. Atmos. Sci., 50, 12281237, https://doi.org/10.1175/1520-0469(1993)050<1228:BMOEPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., E. J. O’Connor, and J. C. Petch, 2012: Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations. Quart. J. Roy. Meteor. Soc., 138, 964979, https://doi.org/10.1002/qj.969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osman, M. K., D. D. Turner, T. Heus, and R. Newsom, 2018: Characteristics of water vapor turbulence profiles in convective boundary layers during the dry and wet seasons over Darwin. J. Geophys. Res. Atmos., 123, 48184836, https://doi.org/10.1029/2017JD028060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. D., 2006: A study of probability distributions of boundary-layer humidity and associated errors in parametrized cloud-fraction. Quart. J. Roy. Meteor. Soc., 127, 739758, https://doi.org/10.1002/qj.49712757302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C.-H. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci., 49, 19031923, https://doi.org/10.1175/1520-0469(1992)049<1903:ASOBBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355, https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952: The growth of cloud drops by condensation. Aust. J. Sci. Res., 5, 6686.

  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toto, T., and M. P. Jensen, 2016: Interpolated sounding and gridded sounding value-added products. U.S. Department of Energy Tech. Rep. DOE/SC-ARM/TR-183, 13 pp.

    • Crossref
    • Export Citation
  • Turner, D. D., V. Wulfmeyer, L. K. Berg, and J. H. Schween, 2014: Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. Atmos., 119, 11 15111 165, https://doi.org/10.1002/2014JD022202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., C. J. Morcrette, H. Y. Ma, S. A. Klein, and J. C. Petch, 2015: Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models. Quart. J. Roy. Meteor. Soc., 141, 31903206, https://doi.org/10.1002/qj.2603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., C. J. Morcrette, and I. A. Boutle, 2021: A bimodal diagnostic cloud fraction parameterization. Part II: Evaluation and resolution sensitivity. Mon. Wea. Rev., 149, 859878, https://doi.org/10.1175/MWR-D-20-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, https://doi.org/10.1007/s003820100157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, https://doi.org/10.1002/qj.49712555707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57, 18881905, https://doi.org/10.1175/1520-0469(2000)057<1888:RBTWCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., Y. Liu, M. P. Jensen, T. Toto, M. J. Foster, and C. N. Long, 2014: A comparison of multiscale variations of decade-long cloud fractions from six different platforms over the Southern Great Plains in the United States. J. Geophys. Res. Atmos., 119, 34383459, https://doi.org/10.1002/2013JD019813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999: Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results. J. Atmos. Sci., 56, 10771087, https://doi.org/10.1175/1520-0469(1999)056<1077:IOHSAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. Pal, D. D. Turner, and E. Wagner, 2010: Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, https://doi.org/10.1007/s10546-010-9494-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. K. Muppa, A. Behrendt, E. Hammann, F. Spaeth, Z. Sorbjan, D. D. Turner, and R. M. Hardesty, 2016: Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: Theoretical description and a strategy for its confirmation with a novel lidar system synergy. J. Atmos. Sci., 73, 667692, https://doi.org/10.1175/JAS-D-14-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., S. Xie X. Chen, M. P. Jensen, and M. Dunn, 2014: Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method. J. Geophys. Res. Atmos., 119, 53755385, https://doi.org/10.1002/2013JD021112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., and P. Zuidema, 2009: On the use of PDF scheme to parameterize subgrid clouds. Geophys. Res. Lett., 36, L05807, https://doi.org/10.1029/2008GL036817.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 531 0 0
Full Text Views 958 351 28
PDF Downloads 957 366 32