A Bimodal Diagnostic Cloud Fraction Parameterization. Part II: Evaluation and Resolution Sensitivity

Kwinten Van Weverberg Met Office, Exeter, United Kingdom

Search for other papers by Kwinten Van Weverberg in
Current site
Google Scholar
PubMed
Close
,
Cyril J. Morcrette Met Office, Exeter, United Kingdom

Search for other papers by Cyril J. Morcrette in
Current site
Google Scholar
PubMed
Close
, and
Ian Boutle Met Office, Exeter, United Kingdom

Search for other papers by Ian Boutle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A wide range of approaches exists to account for subgrid cloud variability in regional simulations of the atmosphere. This paper addresses the following questions: 1) Is there still benefit in representing subgrid variability of cloud in convection-permitting simulations? 2) What is the sensitivity to the cloud fraction parameterization complexity? 3) Are current cloud fraction parameterizations scale-aware across convection-permitting resolutions? These questions are addressed for regional simulations of a 6-week observation campaign in the U.S. southern Great Plains. Particular attention is given to a new diagnostic cloud fraction scheme with a bimodal subgrid saturation-departure PDF, described in Part I. The model evaluation is performed using ground-based remote sensing synergies, satellite-based retrievals, and surface observations. It is shown that not using a cloud fraction parameterization results in underestimated cloud frequency and water content, even for stratocumulus. The use of a cloud fraction parameterization does not guarantee improved cloud property simulations, however. Diagnostic and prognostic cloud schemes with a symmetric subgrid saturation-departure PDF underestimate cloud fraction and cloud optical thickness, and hence overestimate surface shortwave radiation. These schemes require empirical bias-correction techniques to improve the cloud cover. The new cloud fraction parameterization, introduced in Part I, improves cloud cover, liquid water content, cloud-base height, optical thickness, and surface radiation compared to schemes reliant on a symmetric PDF. Furthermore, cloud parameterizations using turbulence-based, rather than prescribed constant subgrid variances, are shown to be more scale-aware across convection-permitting resolutions.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kwinten Van Weverberg, kwinten.vanweverberg@metoffice.gov.uk

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-20-0224.1.

Abstract

A wide range of approaches exists to account for subgrid cloud variability in regional simulations of the atmosphere. This paper addresses the following questions: 1) Is there still benefit in representing subgrid variability of cloud in convection-permitting simulations? 2) What is the sensitivity to the cloud fraction parameterization complexity? 3) Are current cloud fraction parameterizations scale-aware across convection-permitting resolutions? These questions are addressed for regional simulations of a 6-week observation campaign in the U.S. southern Great Plains. Particular attention is given to a new diagnostic cloud fraction scheme with a bimodal subgrid saturation-departure PDF, described in Part I. The model evaluation is performed using ground-based remote sensing synergies, satellite-based retrievals, and surface observations. It is shown that not using a cloud fraction parameterization results in underestimated cloud frequency and water content, even for stratocumulus. The use of a cloud fraction parameterization does not guarantee improved cloud property simulations, however. Diagnostic and prognostic cloud schemes with a symmetric subgrid saturation-departure PDF underestimate cloud fraction and cloud optical thickness, and hence overestimate surface shortwave radiation. These schemes require empirical bias-correction techniques to improve the cloud cover. The new cloud fraction parameterization, introduced in Part I, improves cloud cover, liquid water content, cloud-base height, optical thickness, and surface radiation compared to schemes reliant on a symmetric PDF. Furthermore, cloud parameterizations using turbulence-based, rather than prescribed constant subgrid variances, are shown to be more scale-aware across convection-permitting resolutions.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kwinten Van Weverberg, kwinten.vanweverberg@metoffice.gov.uk

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-20-0224.1.

Save
  • Abel, S. J., I. A. Boutle, K. Waite, S. Fox, P. R. A. Brown, and R. Cotton, 2017: The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a Northern Hemisphere cold-air outbreak. J. Atmos. Sci., 74, 22932314, https://doi.org/10.1175/JAS-D-16-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulations across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, M., and Coauthors, 2020: The first Met Office Unified Model-JULES Regional Atmosphere and Land configuration, RAL1. Geosci. Model. Dev., 13, 19992029, https://doi.org/10.5194/gmd-13-1999-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, and T. L. Bell, 1994: The albedo of stratocumulus clouds. J. Atmos. Sci., 51, 24342455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9, 270304, https://doi.org/10.1175/1520-0442(1996)009<0270:APCWPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, K., P. R. Field, I. A. Boutle, C. J. Morcrette, and J. M. Wilkinson, 2016: A physically based subgrid parameterization for the production and maintenance of mixed-phase clouds in a general circulation model. J. Atmos. Sci., 73, 279291, https://doi.org/10.1175/JAS-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711730, https://doi.org/10.1002/qj.58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant, 2017: The Met Office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 143, 28462861, https://doi.org/10.1002/qj.3135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., 1980: Transport layer depth calculations. Second Joint Conf. on Applications of Air Pollution Meteorology, New Orleans, LA, Amer. Meteor. Soc., 787–791.

  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaver, R., R. Haarsma, P. L. Vidale, and W. Hazeleger, 2020: Effective resolution in high resolution global atmospheric models for climate studies. Atmos. Sci. Lett., 21, e952, https://doi.org/10.1002/asl.952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., D. P. Schanen, M. Wang, M. Ovchinnikov, and S. Ghan, 2012: PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km. Mon. Wea. Rev., 140, 285306, https://doi.org/10.1175/MWR-D-10-05059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Trent, H., and Z. X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5, 175187, https://doi.org/10.1007/BF00251808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., and S. Yoh, 1993: Binormal model of ensemble partial cloudiness. J. Atmos. Sci., 50, 12281237, https://doi.org/10.1175/1520-0469(1993)050<1228:BMOEPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/pdfpapers/83847.pdf.

  • Liu, S., and X. Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, https://doi.org/10.1175/2010JCLI3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., N. McFarlane, L. Levkov, K. Abdella, and F. Albers, 1999: Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J. Climate, 12, 438461, https://doi.org/10.1175/1520-0442(1999)012<0438:CDCSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2018: CAUSES: On the role of surface energy budget errors to the warm surface air temperature error over the central United States. J. Geophys. Res. Atmos., 123, 28882909, https://doi.org/10.1002/2017JD027194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos., 123, 26552683, https://doi.org/10.1002/2017JD027199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanish, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, https://doi.org/10.1023/A:1018915827400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osman, M. K., D. D. Turner, T. Heus, and R. Newsom, 2018: Characteristics of water vapor turbulence profiles in convective boundary layers during the dry and wet seasons over Darwin. J. Geophys. Res. Atmos., 123, 48184836, https://doi.org/10.1029/2017JD028060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. D., 2006: A study of probability distributions of boundary-layer humidity and associated errors in parametrized cloud-fraction. Quart. J. Roy. Meteor. Soc., 127, 739758, https://doi.org/10.1002/qj.49712757302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricard, J. L., and J. F. Royer, 1993: A statistical cloud scheme for use in an AGCM. Ann. Geophys., 11, 10951115.

  • Shi, Y., and C. N. Long, 2002: Best estimate radiation flux value added procedure: Algorithm operational details and explanations. Tech. Rep. DOE/SC-ARM/TR-008, U.S. Department of Energy, 55 pp.

  • Sivaraman, C., S. McFaralane, E. Chapman, M. P. Jensen, T. Toto, S. Liu, and M. Fischer, 2013: Planetary Boundary Layer (PBL) Height Value Added Product (VAP): Radiosonde Retrievals. Tech. Rep. DOE/SC-ARM/TR-132, U.S. Department of Energy, 36 pp., http://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-132.pdf.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffel, T., 2005: Solar Infrared Radiation Station (SIRS) Handbook. Tech. Rep. DOE/SC-ARM/TR-025, U.S. Department of Energy, https://doi.org/10.2172/1432706.

    • Crossref
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690, https://doi.org/10.1002/qj.49710444110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2003: Impact of temperature and humidity variability on cloud cover assessed using aircraft data. Quart. J. Roy. Meteor. Soc., 129, 21512170, https://doi.org/10.1256/qj.02.190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toto, T., and M. P. Jensen, 2016: Interpolated Sounding and Gridded Sounding Value-Added Products. Tech. Rep. DOE/SC-ARM/TR-183, U.S. Department of Energy, 13 pp., http://www.arm.gov/publications/techreports/doe-sc-arm-tr-183.pdf.

    • Crossref
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, https://doi.org/10.1109/TGRS.2007.903703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., V. Wulfmeyer, L. K. Berg, and J. H. Schween, 2014: Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. Atmos., 119, 1115111 165, https://doi.org/10.1002/2014JD022202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., I. A. Boutle, C. J. Morcrette, and R. K. Newsom, 2016: Towards retrieving critical relative humidity from ground-based remote-sensing observations. Quart. J. Roy. Meteor. Soc., 142, 28672881, https://doi.org/10.1002/qj.2874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2018: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 123, 36123644, https://doi.org/10.1002/2017JD027188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., C. J. Morcrette, and I. A. Boutle, 2021: A bimodal diagnostic cloud fraction parameterization. Part I: Motivating analysis and scheme description. Mon. Wea. Rev., 149, 841857, https://doi.org/10.1175/MWR-D-20-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2019: The Met Office Unified Model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations. Geosci. Model Dev., 12, 19091963, https://doi.org/10.5194/gmd-12-1909-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., H. V. Knapp, and S. D. Hilberg, 2008: Comparison of gage and multi-sensor precipitation estimates over a range of spatial and temporal scales in the Midwestern United States. J. Hydrol., 351, 112, https://doi.org/10.1016/j.jhydrol.2007.10.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57, 18881905, https://doi.org/10.1175/1520-0469(2000)057<1888:RBTWCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. K. Muppa, A. Behrendt, E. Hammann, F. Spaeth, Z. Sorbjan, D. D. Turner, and R. M. Hardesty, 2016: Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: Theoretical description and a strategy for its confirmation with a novel lidar system synergy. J. Atmos. Sci., 73, 667692, https://doi.org/10.1175/JAS-D-14-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2010: ARM climate modeling best estimate data: A new data product for climate studies. Bull. Amer. Meteor. Soc., 91, 1321, https://doi.org/10.1175/2009BAMS2891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 362 0 0
Full Text Views 678 195 13
PDF Downloads 647 187 10