• Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, https://doi.org/10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22, 38773893, https://doi.org/10.1175/2009JCLI2880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2010: The influence of the Madden–Julian Oscillation on tropical cyclone activity in the Fiji region. J. Climate, 23, 868886, https://doi.org/10.1175/2009JCLI3316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2011: Influence of ENSO on tropical cyclone intensity in the Fiji region. J. Climate, 24, 40964108, https://doi.org/10.1175/2011JCLI4178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, T. M., J. Vazquez-Cuervo, and E. M. Armstrong, 2017: A multi-scale high-resolution analysis of global sea surface temperature. Remote Sen. Environ., 200, 154169, https://doi.org/10.1016/j.rse.2017.07.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., B. Jeremiah, and NOAA CDR Program, 2016: NOAA Climate Data Record Ocean Surface Bundle (OSB) Climate Data Record (CDR) of ocean heat fluxes, version 2. NOAA National Center for Environmental Information, accessed 8 March 2018, https://doi.org/10.7289/V59K4885.

    • Crossref
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011a: The threshold sea surface temperature condition for tropical cyclogenesis. J. Climate, 24, 45704576, https://doi.org/10.1175/JCLI-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011b: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139, 37983808, https://doi.org/10.1175/MWR-D-10-05019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. S. Fraim, and R. N. Trapnell, 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 11531162, https://doi.org/10.1029/JC081i006p01153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, https://doi.org/10.1038/44326.

  • Emanuel, K. A., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106, 14 77114 781, https://doi.org/10.1029/2000JD900641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J., 2006: Southern Ocean warming due to human influence. Geophys. Res. Lett., 33, L19701, https://doi.org/10.1029/2006GL027247.

  • Gill, A., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G., and Coauthors, 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanogr., 22, 190197, https://doi.org/10.5670/oceanog.2009.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1988: Environmental influences on tropical cyclones. Aust. Meteor. Mag., 36, 127139.

  • Guan, S., W. Zhao, J. Huthnance, J. Tian, and J. Wang, 2014: Observed upper ocean response to Typhoon Megi (2010) in the northern South China Sea. J. Geophys. Res. Oceans, 119, 31343157, https://doi.org/10.1002/2013JC009661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutro, R., 2015: Pam (Southern Pacific Ocean). Accessed 29 January 2017, https://www.nasa.gov/content/goddard/pam-southern-pacific-ocean/.

  • Gutro, R., 2017: NASA sees Winston winding down near Norfolk Island. Accessed 29 January 2017, https://www.nasa.gov/feature/goddard/2016/winston-southwestern-pacific-ocean.

  • Hart, R. E., R. N. Maue, and M. C. Watson, 2007: Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Wea. Rev., 135, 39904005, https://doi.org/10.1175/2007MWR2038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H. C., J. Boucharel, I. I. Lin, F. F. Jin, C. C. Lien, and I. F. Pun, 2017: Air-sea fluxes for Hurricane Patricia (2015): Comparison with Supertyphoon Haiyan (2013) and under different ENSO conditions. J. Geophys. Res. Oceans, 122, 60766089, https://doi.org/10.1002/2017JC012741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, https://doi.org/10.1175/2009MWR2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2015: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory. J. Phys. Oceanogr., 45, 16671689, https://doi.org/10.1175/JPO-D-14-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and G. R. Halliwell, 2011: The response of quasigeostrophic oceanic vortices to tropical cyclone forcing. J. Phys. Oceanogr., 41, 19651985, https://doi.org/10.1175/JPO-D-11-06.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, https://doi.org/10.1175/MWR-D-13-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., R. Ferrari, and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, https://doi.org/10.1029/2009GL041808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullien, S., and Coauthors, 2012: Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J. Phys. Oceanogr., 42, 18821906, https://doi.org/10.1175/JPO-D-11-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullien, S., P. Marchesiello, C. E. Menkes, J. Lefevre, N. C. Jourdain, G. Samson, and M. Lengaigne, 2014: Ocean feedback to tropical cyclones: Climatology and processes. Climate Dyn., 43, 28312854, https://doi.org/10.1007/s00382-014-2096-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, C. R. Sampson, J. E. Peak, J. Cummings, and W. H. Schubert, 2013: Upper oceanic energy response to tropical cyclone passage. J. Climate, 26, 26312650, https://doi.org/10.1175/JCLI-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654, https://doi.org/10.1175/2007JCLI1659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., G. J. Goni, J. A. Knaff, C. Forbes, and M. M. Ali, 2013: Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards, 66, 14811500, https://doi.org/10.1007/s11069-012-0214-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z. H., J. F. Fei, X. G. Huang, and X. P. Cheng, 2013: The effects of ocean feedback on tropical cyclone energetics under idealized air-sea interaction conditions. J. Geophys. Res. Atmos., 118, 97789788, https://doi.org/10.1002/JGRD.50780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z. H., J. F. Fei, L. Liu, X. G. Huang, and Y. Li, 2017: An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities. Mon. Wea. Rev., 145, 11811201, https://doi.org/10.1175/MWR-D-16-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaskill, C., L. K. Shay, J. K. Brewster, and P. C. Meyers, 2016: Development and assessment of the Systematically Merged Pacific Ocean Regional Temperature and Salinity (SPORTS) climatology for ocean heat content estimations. J. Atmos. Oceanic Technol., 33, 22592272, https://doi.org/10.1175/JTECH-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 37453765, https://doi.org/10.1175/JCLI-D-12-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, P., L. Shay, and J. Brewster, 2014: Development and analysis of the systematically merged Atlantic regional temperature and salinity climatology for oceanic heat content estimates. J. Atmos. Oceanic Technol., 31, 131149, https://doi.org/10.1175/JTECH-D-13-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyssignac, B., and Coauthors, 2019: Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci., 6, 432, http://doi.org/10.3389/fmars.2019.00432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagamani, P. V., and Coauthors, 2012: Validation of satellite-derived tropical cyclone heat potential with in situ observations in the North Indian Ocean. Remote Sens. Lett., 3, 615620, https://doi.org/10.1080/01431161.2011.640959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. J., Y. O. Kwon, and J. F. Price, 2011: Argo array observation of ocean heat content changes induced by tropical cyclones in the North Pacific. J. Geophys. Res., 116, C12025, https://doi.org/10.1029/2011JC007165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, K. M. AchutaRao, P. J. Gleckler, J. M. Gregory, and W. M. Washington, 2006: Anthropogenic warming of the oceans: Observations and model results. J. Climate, 19, 18731900, https://doi.org/10.1175/JCLI3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, S., T. Aung, and A. Singh, 2009: Analysis of water properties and geostrophic currents in Fiji waters before and after Tropical Cyclone Gene. Amer. J. Environ. Sci., 5, 455460, https://doi.org/10.3844/AJESSP.2009.455.459.

    • Search Google Scholar
    • Export Citation
  • Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329–332, http://doi.org/10.1038/ngeo477.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget, and observations. J. Phys. Oceanogr., 13, 949965, https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. R. Schudlich, 1987: Wind-driven ocean currents and Ekman transport. Science, 238, 15341538, https://doi.org/10.1126/science.238.4833.1534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I.-I. Lin, and M.-H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the western North Pacific Ocean. Geophys. Res. Lett., 40, 46804684, https://doi.org/10.1002/grl.50548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayson, M. D., G. N. Ivey, N. L. Jones, R. J. Lowe, G. W. Wake, and J. D. McConochie, 2015: Near-inertial ocean response to tropical cyclone forcing on the Australian north-west shelf. J. Geophys. Res. Oceans, 120, 77227751, https://doi.org/10.1002/2015JC010868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1950: A model of hurricane formation. J. Appl. Phys., 21, 917925, https://doi.org/10.1063/1.1699784.

  • Rudzin, J. E., L. K. Shay, and B. Jaimes de la Cruz, 2019: The impact of the Amazon–Orinoco River plume onenthalpy flux and air–sea interaction within Caribbean Sea tropical cyclones. Mon. Wea. Rev., 147, 931950, https://doi.org/10.1175/MWR-D-18-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, https://doi.org/10.1175/2010JPO4313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, K. K., D. C. Verdon-Kidd, and A. D. Magee, 2020: Decadal variability of tropical cyclogenesis and decay in the southwest Pacific. Int. J. Climatol., 40, 28112829, https://doi.org/10.1002/joc.6368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., R. L. Elsberry, and P. G. Black, 1989: Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19, 649669, https://doi.org/10.1175/1520-0485(1989)019<0649:VSOTOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowasser, M., Y. Wang, and K. Hamilton, 2007: Tropical cyclone changes in the western North Pacific in a global warming scenario. J. Climate, 20, 23782396, https://doi.org/10.1175/JCLI4126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci., 11, 836841, https://doi.org/10.1038/s41561-018-0226-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., J. McConochie, M. Ghantous, L. Loffredo, and A. Babanin, 2012: The effect of wave-induced turbulence on the ocean mixed layer during tropical cyclones: Field observations on the Australian north-west shelf. J. Geophys. Res., 117, C00J24, https://doi.org/10.1029/2011JC007780.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2020: Heat stored in the Earth system: Where does the energy go? Earth Syst. Sci. Data, 12, 20132041, https://doi.org/10.5194/essd-12-2013-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-W., and W. Han, 2014: The Bay of Bengal upper-ocean response to tropical cyclone forcing during 1999. J. Geophys. Res. Oceans, 119, 98120, https://doi.org/10.1002/2013JC008965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. D., G. J. Han, Y. Q. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367385, https://doi.org/10.1016/j.dynatmoce.2011.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y. F., L. Li, and C. Z. Wang, 2017: The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Oceans, 122, 48294844, https://doi.org/10.1002/2017JC012694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yulsman, T., 2016: How Winston become Earth’s strongest Southern Hemisphere storm in recorded history. Accessed 16 May 2017, https://www.discovermagazine.com/environment/how-winston-became-earths-strongest-southern-hemisphere-storm-in-recorded-history.

  • Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda testbed mooring site: 13–23 August 1995. J. Geophys. Res., 107, 3232, https://doi.org/10.1029/2001JC000969.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, C. Eden, and T. Hibiya, 2009: On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J. Phys. Oceanogr., 39, 30403045, https://doi.org/10.1175/2009JPO4259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., D. Chen, L. Zhou, X. Liu, T. Ding, and B. Zhou, 2016: Upper ocean response to Typhoon Kalmaegi (2014). J. Geophys. Res. Oceans, 121, 65206535, https://doi.org/10.1002/2016JC012064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Lin, D. R. Chavas, and W. Mei, 2019: Tropical cyclone cold wake size and its applications to power dissipation and ocean heat uptake estimates. Geophys. Res. Lett., 46, 10 17710 185, https://doi.org/10.1029/2019GL083783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Zhang, D. Zheng, F. Wang, and L. Xu, 2015: Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific. J. Geophys. Res. Atmos., 120, 40724089, https://doi.org/10.1002/2014JD022334.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 562 562 80
Full Text Views 222 222 11
PDF Downloads 180 180 9

Sea Surface Temperature and Ocean Heat Content during Tropical Cyclones Pam (2015) and Winston (2016) in the Southwest Pacific Region

View More View Less
  • 1 Geophysical Institute, University of Bergen, Bergen, Norway
  • | 2 Bjerknes Centre for Climate Research, Bergen, Norway
  • | 3 School of Information Technology, Engineering, Mathematics and Physics, The University of the South Pacific, Suva, Fiji
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The sea surface temperature (SST) and upper-ocean heat content (OHC) have been explored along the track of two tropical cyclones (TCs): TC Pam (2015) and TC Winston (2016). These TCs severely affected the islands of Vanuatu and Fiji, in the South Pacific region (8°–30°S, 140°E−170°W). The SST decreased by as much as 5.4°C along the tracks of the TCs with most cooling occurring to the left of the TCs tracks relative to TC motion. SST cooling of 1°–5°C has generally been observed during both the forced and relaxation stages of TC passage. Argo profiles near the TCs revealed observable temperature-based mixed layer deepening. Subsurface warming was also observed post-TC passage from the temperature profile of one of the floats after the passage of both TCs. The OHC and heat fluxes are seen to play an important part in TC intensification as both these TCs intensified after passing over regions of high OHC and enhanced heat fluxes. Apart from the traditionally used OHC obtained up to the depth of the 26°C isotherm (QH), the OHC was also determined up to the depth of the 20°C isotherm (QH,20). The QH and QH,20 values decreased in the majority of cases post TC passage while QH,20 increased in one instance post-TC passage for both the TCs. QH,20 was also used to identify heat energy changes at deeper levels and it correlated well with the traditionally used OHC during the weaker stages of the TCs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0025.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sushil Kumar, kumar_su@usp.ac.fj

Abstract

The sea surface temperature (SST) and upper-ocean heat content (OHC) have been explored along the track of two tropical cyclones (TCs): TC Pam (2015) and TC Winston (2016). These TCs severely affected the islands of Vanuatu and Fiji, in the South Pacific region (8°–30°S, 140°E−170°W). The SST decreased by as much as 5.4°C along the tracks of the TCs with most cooling occurring to the left of the TCs tracks relative to TC motion. SST cooling of 1°–5°C has generally been observed during both the forced and relaxation stages of TC passage. Argo profiles near the TCs revealed observable temperature-based mixed layer deepening. Subsurface warming was also observed post-TC passage from the temperature profile of one of the floats after the passage of both TCs. The OHC and heat fluxes are seen to play an important part in TC intensification as both these TCs intensified after passing over regions of high OHC and enhanced heat fluxes. Apart from the traditionally used OHC obtained up to the depth of the 26°C isotherm (QH), the OHC was also determined up to the depth of the 20°C isotherm (QH,20). The QH and QH,20 values decreased in the majority of cases post TC passage while QH,20 increased in one instance post-TC passage for both the TCs. QH,20 was also used to identify heat energy changes at deeper levels and it correlated well with the traditionally used OHC during the weaker stages of the TCs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0025.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sushil Kumar, kumar_su@usp.ac.fj

Supplementary Materials

    • Supplemental Materials (ZIP 1.52 MB)
Save