A Sequential Non-Gaussian Approach for Precipitation Data Assimilation

Andrés A. Pérez Hortal Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Andrés A. Pérez Hortal in
Current site
Google Scholar
PubMed
Close
,
Isztar Zawadzki Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Isztar Zawadzki in
Current site
Google Scholar
PubMed
Close
, and
M. K. Yau Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In two recent studies, the authors presented a new data assimilation (DA) method for precipitation observations that does not require Gaussianity or linearity assumptions. The method, called localized ensemble mosaic assimilation (LEMA), initializes the new ensemble forecast by relaxing the background ensemble (prior) toward a single analysis composed of different column states taken from the ensemble members with the lowest error in the precipitation forecast. However, a limitation of the LEMA method is that relaxing the background ensemble toward that analysis severely reduces the spread of the ensemble, thus, limiting its usefulness for cycled DA applications. This study presents a new version of LEMA, called localized ensemble mosaic assimilation sequence (LEMAS), suitable for cycled DA operations. LEMAS constructs an ensemble of analysis mosaics using a small group of members closer to the observations instead of only the closest one. The new ensemble forecast is then initialized by recentering the prior ensemble around the mean of the analysis ensemble while scaling the original background perturbations to match the spread of the analysis mosaics. A series of ideal and real DA experiments are used to evaluate the potential of LEMAS for the assimilation of hourly accumulation observations. A comparison of LEMAS with the local ensemble transform Kalman filter (LETKF) using idealized experiments shows that LEMAS produces similar or slightly better forecast quality than the LETKF in temperature, water vapor, winds, and precipitation. Extending this comparison to real DA experiments assimilating Stage-IV precipitation observations shows that both methods produce precipitation forecasts of comparable quality.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrés A. Pérez Hortal, andres.perezhortal@mail.mcgill.ca

Abstract

In two recent studies, the authors presented a new data assimilation (DA) method for precipitation observations that does not require Gaussianity or linearity assumptions. The method, called localized ensemble mosaic assimilation (LEMA), initializes the new ensemble forecast by relaxing the background ensemble (prior) toward a single analysis composed of different column states taken from the ensemble members with the lowest error in the precipitation forecast. However, a limitation of the LEMA method is that relaxing the background ensemble toward that analysis severely reduces the spread of the ensemble, thus, limiting its usefulness for cycled DA applications. This study presents a new version of LEMA, called localized ensemble mosaic assimilation sequence (LEMAS), suitable for cycled DA operations. LEMAS constructs an ensemble of analysis mosaics using a small group of members closer to the observations instead of only the closest one. The new ensemble forecast is then initialized by recentering the prior ensemble around the mean of the analysis ensemble while scaling the original background perturbations to match the spread of the analysis mosaics. A series of ideal and real DA experiments are used to evaluate the potential of LEMAS for the assimilation of hourly accumulation observations. A comparison of LEMAS with the local ensemble transform Kalman filter (LETKF) using idealized experiments shows that LEMAS produces similar or slightly better forecast quality than the LETKF in temperature, water vapor, winds, and precipitation. Extending this comparison to real DA experiments assimilating Stage-IV precipitation observations shows that both methods produce precipitation forecasts of comparable quality.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrés A. Pérez Hortal, andres.perezhortal@mail.mcgill.ca
Save
  • Baldwin, M., and K. Mitchell, 1997: The NCEP hourly multisensor U.S. precipitation analysis. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., J95–J96.

  • Bauer, P., G. Ohring, C. Kummerow, and T. Auligne, 2011: Assimilating satellite observations of clouds and precipitation into NWP models. Bull. Amer. Meteor. Soc., 92, ES25ES28, https://doi.org/10.1175/2011BAMS3182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., M. Hamrud, and L. Isaksen, 2015: EnKF and hybrid gain ensemble data assimilation. Part II: EnKF and hybrid gain results. Mon. Wea. Rev., 143, 48654882, https://doi.org/10.1175/MWR-D-15-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and D. Jacques, 2020: Non-Gaussian deterministic assimilation of radar-derived precipitation accumulations. Mon. Wea. Rev., 148, 783808, https://doi.org/10.1175/MWR-D-19-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Leutbecher, and L. Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 20512066, https://doi.org/10.1002/qj.346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davolio, S., F. Silvestro, and T. Gastaldo, 2017: Impact of rainfall assimilation on high-resolution hydrometeorological forecasts over Liguria, Italy. J. Hydrometeor., 18, 26592680, https://doi.org/10.1175/JHM-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., M. Abaza, F. Anctil, and R. Turcotte, 2014: Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeor., 15, 17081713, https://doi.org/10.1175/JHM-D-14-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., M. Janousek, F. Vitart, L. Ferranti, and F. Prates, 2019: Evaluation of ECMWF forecasts, including the 2019 upgrade. ECMWF Tech. Memo. 853, 56 pp., https://doi.org/10.21957/mlvapkke.

    • Crossref
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc, 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huuskonen, A., E. Saltikoff, and I. Holleman, 2014: The operational weather radar network in Europe. Bull. Amer. Meteor. Soc., 95, 897907, https://doi.org/10.1175/BAMS-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques, D., D. Michelson, J.-F. Caron, and L. Fillion, 2018: Latent heat nudging in the Canadian regional deterministic prediction system. Mon. Wea. Rev., 146, 39954014, https://doi.org/10.1175/MWR-D-18-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotsuki, S., T. Miyoshi, K. Terasaki, G.-Y. Lien, and E. Kalnay, 2017: Assimilating the global satellite mapping of precipitation data with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). J. Geophys. Res. Atmos., 122, 631650, https://doi.org/10.1002/2016JD025355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., C. M. Kishtawal, and P. K. Pal, 2014: Impact of satellite rainfall assimilation on Weather Research and Forecasting model predictions over the Indian region. J. Geophys. Res. Atmos., 119, 20172031, https://doi.org/10.1002/2013JD020005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, G.-Y., E. Kalnay, and T. Miyoshi, 2013: Effective assimilation of global precipitation: Simulation experiments. Tellus, 65A, 19915, https://doi.org/10.3402/tellusa.v65i0.19915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, G.-Y., T. Miyoshi, and E. Kalnay, 2016: Assimilation of TRMM multisatellite precipitation analysis with a low-resolution NCEP global forecast system. Mon. Wea. Rev., 144, 643661, https://doi.org/10.1175/MWR-D-15-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Lopez, P., 2011: Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF. Mon. Wea. Rev., 139, 20982116, https://doi.org/10.1175/2010MWR3565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., and P. Bauer, 2007: “1D+4DVAR” assimilation of NCEP stage-IV radar and gauge hourly precipitation data at ECMWF. Mon. Wea. Rev., 135, 25062524, https://doi.org/10.1175/MWR3409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macpherson, B., 2001: Operational experience with assimilation of rainfall data in the Met Office Mesoscale model. Meteor. Atmos. Phys., 76, 38, https://doi.org/10.1007/s007030170035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marécal, V., and J.-F. Mahfouf, 2002: Four-dimensional variational assimilation of total column water vapor in rainy areas. Mon. Wea. Rev., 130, 4358, https://doi.org/10.1175/1520-0493(2002)130<0043:FDVAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marécal, V., and J.-F. Mahfouf, 2003: Experiments on 4D-Var assimilation of rainfall data using an incremental formulation. Quart. J. Roy. Meteor. Soc., 129, 31373160, https://doi.org/10.1256/qj.02.120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, C., S. Chen, J. J. Gourley, H. Chen, A. Zhang, Y. Huang, and C. Huang, 2019: Coverage of China new generation weather radar network. Adv. Meteor., 2019, 110, https://doi.org/10.1155/2019/5789358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., 2014: The hybrid local ensemble transform Kalman filter. Mon. Wea. Rev., 142, 21392149, https://doi.org/10.1175/MWR-D-13-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez Hortal, A. A., I. Zawadzki, and M. K. Yau, 2019: A heuristic approach for precipitation data assimilation: Characterization using OSSEs. Mon. Wea. Rev., 147, 34453466, https://doi.org/10.1175/MWR-D-19-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez Hortal, A. A., I. Zawadzki, and M. K. Yau, 2020: A heuristic approach for precipitation data assimilation: Effect of forecast errors and assimilation of NCEP stage IV precipitation analyses. Mon. Wea. Rev., 148, 16291651, https://doi.org/10.1175/MWR-D-19-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., L. Wicker, and M. Buehner, 2019: Progress toward the application of a localized particle filter for numerical weather prediction. Mon. Wea. Rev., 147, 11071126, https://doi.org/10.1175/MWR-D-17-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonin, D., C. Pierce, N. Roberts, S. P. Ballard, and Z. Li, 2017: Performance of Met Office hourly cycling NWP-based nowcasting for precipitation forecasts. Quart. J. Roy. Meteor. Soc., 143, 28622873, https://doi.org/10.1002/qj.3136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephan, K., S. Klink, and C. Schraff, 2008: Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD. Quart. J. Roy. Meteor. Soc., 134, 13151326, https://doi.org/10.1002/qj.269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. International Geophysics Series, Vol. 59, Elsevier, 467 pp.

  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 256 0 0
Full Text Views 309 109 8
PDF Downloads 302 97 4