• Anderson, J. D., and R. D. Rosen, 1983: The latitude–height structure of 40–50 day variations in atmospheric angular momentum. J. Atmos. Sci., 40, 15841591, https://doi.org/10.1175/1520-0469(1983)040<1584:TLHSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, and D. Keyser, 2007: Recurving typhoons as precursors to an early season Arctic outbreak over the continental U.S. Ninth Northeast Regional Operational Workshop, Albany, NY, National Weather Service/Amer. Meteor. Soc., 1–55, http://cstar.cestm.albany.edu/nrow/nrow9/Archambault/archambault.ppt.

  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordiera, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, https://doi.org/10.1175/MWR-D-12-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to storm tracks. J. Atmos. Sci., 67, 13611381, https://doi.org/10.1175/2009JAS3270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., and T.-J. Chen, 1987: Synoptic aspects of the wintertime east Asian monsoon. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 125–160.

  • Chan, J. C. L., and C. Y. Li, 2004: The East Asian winter monsoon. The Asian Monsoon, C. Chang, Ed., World Scientific, 54–106.

    • Crossref
    • Export Citation
  • Chang, C.-P., and K.-M. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108, 298312, https://doi.org/10.1175/1520-0493(1980)108<0298:NCSANE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. Erickson, and K.-M. Lau, 1979: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during 1974. Part I: Synoptic aspects. Mon. Wea. Rev., 107, 812829, https://doi.org/10.1175/1520-0493(1979)107<0812:NCSANE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. E. Millard, and G. T. J. Chen, 1983: Gravitational character of cold surges during winter MONEX. Mon. Wea. Rev., 111, 293307, https://doi.org/10.1175/1520-0493(1983)111<0293:GCOCSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., P. A. Harr, and H.-J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western maritime continent during boreal winter. Mon. Wea. Rev., 133, 489503, https://doi.org/10.1175/MWR-2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, P., 1969: Cold surges over South China. Royal Observatory Hong Kong Tech. Rep. 28, 40 pp.

  • Christenson, C. E., and J. E. Martin, 2012: The large-scale environment associated with the 25–28 April 2011 severe weather outbreak. 16th Annual Severe Storms and Doppler Radar Conf., Des Moines, IA, National Weather Association.

  • Christenson, C. E., J. E. Martin, and Z. J. Handlos, 2017: A synoptic climatology of Northern Hemisphere, cold season polar and subtropical jet superposition events. J. Climate, 30, 72317246, https://doi.org/10.1175/JCLI-D-16-0565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. S., A. J. Nash, and F. Y. Porter, 1993: Diagnostic studies of two contrasting rainfall episodes in Hawaii: Dry 1981 and wet 1982. J. Climate, 6, 14571462, https://doi.org/10.1175/1520-0442(1993)006<1457:DSOTCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, P., and D. Keyser, 2004: Dynamics of jet streaks in a stratified quasi-geostrophic atmosphere: Steady-state representations. Quart. J. Roy. Meteor. Soc., 130, 15791609, https://doi.org/10.1256/qj.03.35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H., and A. Rossa, 1998: PV frontogenesis and upper tropospheric fronts. Mon. Wea. Rev., 126, 15281539, https://doi.org/10.1175/1520-0493(1998)126<1528:PFAUTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defant, F., and H. Taba, 1957: The threefold structure of the atmosphere and the characteristics of the tropopause. Tellus, 9, 259274, https://doi.org/10.3402/tellusa.v9i3.9112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twentieth-century intermodel variability. J. Climate, 26, 49104929, https://doi.org/10.1175/JCLI-D-12-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, K. S., and J. E. Martin, 2017: Synoptic features associated with temporally coherent modes of variability of the North Pacific jet stream. J. Climate, 30, 3954, https://doi.org/10.1175/JCLI-D-15-0833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handlos, Z. J., and J. E. Martin, 2016: Composite analysis of large-scale environments conducive to West Pacific polar/subtropical jet superposition. J. Climate, 29, 71457165, https://doi.org/10.1175/JCLI-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 14941497, https://doi.org/10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffe, S. C., J. E. Martin, D. J. Vimont, and D. J. Lorenz, 2011: A synoptic-climatology of episodic, subseasonal retractions of the Pacific jet. J. Climate, 24, 28462860, https://doi.org/10.1175/2010JCLI3995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and D. L. Priegnitz, 1981: Winter monsoon convection in the vicinity of North Borneo. Part II: Effects on large-scale fields. Mon. Wea. Rev., 109, 16151628, https://doi.org/10.1175/1520-0493(1981)109<1615:WMCITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelnosky, R. T., G. J. Tripoli, and J. E. Martin, 2018: Subtropical/polar jet influence on plains and southeast tornado outbreaks. Nat. Hazards, 93, 373392, https://doi.org/10.1007/s11069-018-3306-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, https://doi.org/10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436, https://doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodama, K., and G. M. Barnes, 1997: Heavy rain events over the south-facing slopes of Hawaii: Attendant conditions. Wea. Forecasting, 12, 347367, https://doi.org/10.1175/1520-0434(1997)012<0347:HREOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koteswaram, P., 1953: An analysis of the high tropospheric wind circulation over India in winter. Indian J. Meteor. Geophys., 4, 1321.

    • Search Google Scholar
    • Export Citation
  • Koteswaram, P., and S. Parthasarathy, 1954: The mean jet stream over India in the pre-monsoon and post-monsoon seasons and vertical motions associated with subtropical jet streams. Indian J. Meteor. Geophys., 5, 138156.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1961: On the role of the subtropical jet stream of winter in the atmospheric general circulation. J. Meteor., 18, 657670, https://doi.org/10.1175/1520-0469(1961)018<0657:OTROTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and J. M. Wallace, 1989: Low-frequency variability in the Northern Hemisphere winter: Geographical distribution, structure and time-scale dependence. J. Atmos. Sci., 46, 31223143, https://doi.org/10.1175/1520-0469(1989)046<3122:LFVITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal timescales. J. Atmos. Sci., 43, 11641181, https://doi.org/10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and C.-P. Chang, 1987: Planetary scale aspects of winter monsoon and teleconnections. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 161–202.

  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical–midlatitude interaction on intraseasonal time-scales during winter. J. Atmos. Sci., 41, 33333350, https://doi.org/10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and K. C. Mo, 1987: Tropical–extratropical teleconnections during Northern Hemisphere winter. Part II: Relationships between monthly mean Northern Hemisphere circulations patterns and proxies for tropical convection. Mon. Wea. Rev., 115, 31153132, https://doi.org/10.1175/1520-0493(1987)115<3115:TETDTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loewe, F., and V. Radok, 1950a: A meridional aerological cross section in the southwest Pacific. J. Meteor., 7, 5865, https://doi.org/10.1175/1520-0469(1950)007<0058:AMACSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loewe, F., and V. Radok, 1950b: Some amendments to “A meridional aerological cross-section in the southwest Pacific.” J. Meteor., 7, 305306, https://doi.org/10.1175/1520-0469(1950)007<0306:SATAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2012: Introduction to Weather and Climate Science. Cognella Publishing, 153 pp.

  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677, https://doi.org/10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., and J. Chow, 1981: Equilibrium geostrophic turbulence. I: A reference solution in a β-plane channel. J. Phys. Oceanogr., 11, 921949, https://doi.org/10.1175/1520-0485(1981)011<0921:EGTIAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K., and V. E. Kousky, 1993: Further analysis of the relationship between circulation anomaly patterns and tropical convection. J. Geophys. Res., 98, 51035113, https://doi.org/10.1029/92JD02952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohri, K., 1953: On the fields of wind and temperature over Japan and adjacent waters during winter of 1950–1951. Tellus, 5, 340358, https://doi.org/10.3402/tellusa.v5i3.8582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779, https://doi.org/10.1175/2010MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrice, A. M., 1973: Quantitative forecasting of the winter monsoon in Hong Kong. Royal Observatory Hong Kong Tech. Rep. 35, 41 pp.

  • Namias, J., and P. F. Clapp, 1949: Confluence theory of the high tropospheric jet stream. J. Meteor., 6, 330336, https://doi.org/10.1175/1520-0469(1949)006<0330:CTOTHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1954: Frontogenesis and frontolysis as a three-dimensional process. J. Meteor., 11, 449461, https://doi.org/10.1175/1520-0469(1954)011<0449:FAFAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and J. E. Martin, 2004: The large-scale modulation of subtropical cyclogenesis in the central and eastern Pacific Ocean. Mon. Wea. Rev., 132, 18131828, https://doi.org/10.1175/1520-0493(2004)132<1813:TLMOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 603 pp.

    • Search Google Scholar
    • Export Citation
  • Panetta, R., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 20732106, https://doi.org/10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reiter, E. R., 1963: Jet Stream Meteorology. University of Chicago Press, 515 pp.

  • Rhines, P., 1975: Waves and turbulence on a β-plane. J. Fluid Mech., 69, 417443, https://doi.org/10.1017/S0022112075001504.

  • Riehl, H., 1962: Jet streams of the atmosphere. Department of Atmospheric Science, Colorado State University Tech. Rep. 32, 117 pp.

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. Mon. Wea. Rev., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and C.-K. Park, 1991: Low frequency intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 48, 629650, https://doi.org/10.1175/1520-0469(1991)048<0629:LFITEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M., and D. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

    • Crossref
    • Export Citation
  • Shapiro, M., and et al. , 1999: A planetary-scale to mesoscale perspective of the life cycles of extratropical cyclones: The bridge between theory and observations. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 139–185.

    • Crossref
    • Export Citation
  • Sutcliffe, R. C., and J. K. Bannon, 1954: Seasonal changes in the upper-air conditions in the Mediterranean Middle East area. Scientific Proc. Int. Association of Meteorology, Rome, Italy, International Union of Geodesy and Geophysics, 322–334.

  • Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27, 23612374, https://doi.org/10.1175/JCLI-D-13-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941961, https://doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., and J. E. Martin, 2014: The role of a polar/subtropical jet superposition in the May 2010 Nashville flood. Wea. Forecasting, 29, 954974, https://doi.org/10.1175/WAF-D-13-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., and J. E. Martin, 2016: Synoptic and mesoscale processes supporting vertical superposition of the polar and subtropical jets in two contrasting cases. Quart. J. Roy. Meteor. Soc., 142, 11331149, https://doi.org/10.1002/qj.2718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., and J. E. Martin, 2017: Diagnosis of a North American polar–subtropical jet superposition employing piecewise potential vorticity inversion. Mon. Wea. Rev., 145, 18531873, https://doi.org/10.1175/MWR-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., L. F. Bosart, and D. Keyser, 2019a: Antecedent North Pacific jet regimes conducive to the development of continental U.S. extreme temperature events during the cool season. Wea. Forecasting, 34, 393414, https://doi.org/10.1175/WAF-D-18-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., D. Keyser, and L. F. Bosart, 2019b: The development of the North Pacific jet phase diagram as an objective tool to monitor the state and forecast skill of the upper-tropospheric flow pattern. Wea. Forecasting, 34, 199219, https://doi.org/10.1175/WAF-D-18-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., D. Keyser, L. F. Bosart, and J. E. Martin, 2020: Composite synoptic-scale environments conducive to North American polar–subtropical jet superposition events. Mon. Wea. Rev., 148, 19872008, https://doi.org/10.1175/MWR-D-19-0353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M. C., and J. C. L. Chan, 1995: Surface features of winter monsoon surges over South China. Mon. Wea. Rev., 123, 662680, https://doi.org/10.1175/1520-0493(1995)123<0662:SFOWMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., 1950: The circulation of the high troposphere over China in the winter of 1945–46. Tellus, 2, 173183, https://doi.org/10.3402/tellusa.v2i3.8548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 119 119 6
Full Text Views 35 35 4
PDF Downloads 40 40 5

Composite Life Cycle of West Pacific Jet-Superposition Events and the Large-Scale Environmental Response over Western North America

View More View Less
  • 1 Georgia Institute of Technology, Atlanta, Georgia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Vertical alignment of the polar and subtropical jet streams in the west Pacific basin occurs most often during the boreal cold season. Recent work has revealed that the large-scale environment conducive to producing such superpositions involves interaction between East Asian winter monsoon cold-surge events, lower-latitude convection, and internal jet dynamics. The evolution of the large-scale environments associated with these events post-superposition as well as the significance of that evolution on aspects of the wintertime Northern Hemisphere general circulation is examined through construction of a 44-case composite. The post-superposition west Pacific jet extends eastward associated with an anomalous positive–negative geopotential height couplet straddling the jet’s exit region. This jet extension results in ridge building over Alaska and northwestern Canada. The large-scale evolutions associated with the composite post-superposition environment occur consistently among the majority of cases considered within this analysis. The positive–negative geopotential height anomaly couplet, enhanced jet entrance circulation, low-latitude convection, and internal jet dynamics present in the pre-superposition environment weaken post-superposition. As a result, the characteristic vertical PV “wall” associated with the composite vertically superposed jet weakens. Last, investigation of the value of using the two most dominant modes of west Pacific jet variability in observing the evolution of the superposed west Pacific jet post-superposition reveals that, while the extension of the jet is exhibited, significant variability exists when analyzing each of the 44 cases of interest individually.

Martin’s current affiliation: University of Wisconsin–Madison, Madison, Wisconsin.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zachary J. Handlos, zachary.handlos@eas.gatech.edu

Abstract

Vertical alignment of the polar and subtropical jet streams in the west Pacific basin occurs most often during the boreal cold season. Recent work has revealed that the large-scale environment conducive to producing such superpositions involves interaction between East Asian winter monsoon cold-surge events, lower-latitude convection, and internal jet dynamics. The evolution of the large-scale environments associated with these events post-superposition as well as the significance of that evolution on aspects of the wintertime Northern Hemisphere general circulation is examined through construction of a 44-case composite. The post-superposition west Pacific jet extends eastward associated with an anomalous positive–negative geopotential height couplet straddling the jet’s exit region. This jet extension results in ridge building over Alaska and northwestern Canada. The large-scale evolutions associated with the composite post-superposition environment occur consistently among the majority of cases considered within this analysis. The positive–negative geopotential height anomaly couplet, enhanced jet entrance circulation, low-latitude convection, and internal jet dynamics present in the pre-superposition environment weaken post-superposition. As a result, the characteristic vertical PV “wall” associated with the composite vertically superposed jet weakens. Last, investigation of the value of using the two most dominant modes of west Pacific jet variability in observing the evolution of the superposed west Pacific jet post-superposition reveals that, while the extension of the jet is exhibited, significant variability exists when analyzing each of the 44 cases of interest individually.

Martin’s current affiliation: University of Wisconsin–Madison, Madison, Wisconsin.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zachary J. Handlos, zachary.handlos@eas.gatech.edu
Save