A 23-Year Severe Hail Climatology Using GridRad MESH Observations

Elisa M. Murillo School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Elisa M. Murillo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7522-2105
,
Cameron R. Homeyer School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
, and
John T. Allen Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

Search for other papers by John T. Allen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Assessments of spatiotemporal severe hailfall characteristics using hail reports are plagued by serious limitations in report databases, including biases in reported sizes, occurrence time, and location. Multiple studies have used Next Generation Weather Radar (NEXRAD) network observations or environmental hail proxies from reanalyses. Previous work has specifically utilized the single-polarization radar parameter maximum expected size of hail (MESH). In addition to previous work being temporally limited, updates are needed to include recent improvements that have been made to MESH. This study aims to quantify severe hailfall characteristics during a 23-yr period, markedly longer than previous studies, using both radar observations and reanalysis data. First, the improved MESH configuration is applied to the full archive of gridded hourly radar observations known as GridRad (1995–2017). Next, environmental constraints from the Modern-Era Retrospective Analysis for Research and Applications, version 2, are applied to the MESH distributions to produce a corrected hailfall climatology that accounts for the reduced likelihood of hail reaching the ground. Spatial, diurnal, and seasonal patterns show that in contrast to the report climatology indicating one high-frequency hail maximum centered on the Great Plains, the MESH-only method characterizes two regions: the Great Plains and the Gulf Coast. The environmentally filtered MESH climatology reveals improved agreement between report characteristics (frequency, location, and timing) and the recently improved MESH calculation methods, and it reveals an overall increase in diagnosed hail days and westward broadening in the spatial maximum in the Great Plains than that seen in reports.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elisa Murillo, murillem@ou.edu

Abstract

Assessments of spatiotemporal severe hailfall characteristics using hail reports are plagued by serious limitations in report databases, including biases in reported sizes, occurrence time, and location. Multiple studies have used Next Generation Weather Radar (NEXRAD) network observations or environmental hail proxies from reanalyses. Previous work has specifically utilized the single-polarization radar parameter maximum expected size of hail (MESH). In addition to previous work being temporally limited, updates are needed to include recent improvements that have been made to MESH. This study aims to quantify severe hailfall characteristics during a 23-yr period, markedly longer than previous studies, using both radar observations and reanalysis data. First, the improved MESH configuration is applied to the full archive of gridded hourly radar observations known as GridRad (1995–2017). Next, environmental constraints from the Modern-Era Retrospective Analysis for Research and Applications, version 2, are applied to the MESH distributions to produce a corrected hailfall climatology that accounts for the reduced likelihood of hail reaching the ground. Spatial, diurnal, and seasonal patterns show that in contrast to the report climatology indicating one high-frequency hail maximum centered on the Great Plains, the MESH-only method characterizes two regions: the Great Plains and the Gulf Coast. The environmentally filtered MESH climatology reveals improved agreement between report characteristics (frequency, location, and timing) and the recently improved MESH calculation methods, and it reveals an overall increase in diagnosed hail days and westward broadening in the spatial maximum in the Great Plains than that seen in reports.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elisa Murillo, murillem@ou.edu
Save
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955-2014. Electron. J. Severe Storms Meteor., 10 (3), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015a: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, https://doi.org/10.1038/ngeo2385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015b: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, Y. Kaheil, A. H. Sobel, C. Lepore, S. Nong, and A. Muehlbauer, 2017: An extreme value model for U.S. hail size. Mon. Wea. Rev., 145, 45014519, https://doi.org/10.1175/MWR-D-17-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. J. Punge, Q. Zhang, P. Groenemeijer, M. Kunz, and K. Ortega, 2020: Understanding hail in the earth system. Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bang, S. D., and D. J. Cecil, 2019: Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteor. Climatol., 58, 18891904, https://doi.org/10.1175/JAMC-D-19-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardsley, W. E., 1990: On the maximum observed hailstone size. J. Appl. Meteor., 29, 11851187, https://doi.org/10.1175/1520-0450(1990)029<1185:OTMOHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and B. N. Henley, 2015: Intraseasonal variability of hail in the contiguous United States: Relationship to the Madden–Julian oscillation. Mon. Wea. Rev., 143, 10861103, https://doi.org/10.1175/MWR-D-14-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., J. T. Allen, H. J. Punge, M. Kunz, and D. Simanovic, 2018: A long-term overshooting convective cloud-top detection database over Australia derived from MTSAT Japanese Advanced Meteorological Imager Observations. J. Appl. Meteor. Climatol., 57, 937951, https://doi.org/10.1175/JAMC-D-17-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and J. W. Leighton, 2012: Creating high-resolution hail datasets using social media and post-storm ground surveys. Electron. J. Oper. Meteor., 13, 3245, http://nwafiles.nwas.org/ej/pdf/2012-EJ3.pdf.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and C. R. Homeyer, 2017: GridRad—Three-dimensional gridded NEXRAD WSR-88D radar data. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 13 May 2020, https://doi.org/10.5065/D6NK3CR7.

    • Crossref
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruick, Z. S., K. L. Rasmussen, and D. J. Cecil, 2019: Subtropical South American hailstorm characteristics and environments. Mon. Wea. Rev., 147, 42894304, https://doi.org/10.1175/MWR-D-19-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., and P. L. Smith, 2013: Comments on “An objective high-resolution hail climatology of the contiguous United States.” Wea. Forecasting, 28, 915917, https://doi.org/10.1175/WAF-D-13-00020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48, 12811286, https://doi.org/10.1175/2009JAMC2125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1999: Data and approaches for determining hail risk in the contiguous United States. J. Appl. Meteor., 38, 17301739, https://doi.org/10.1175/1520-0450(1999)038<1730:DAAFDH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 10591067, https://doi.org/10.1175/1520-0450(1985)024<1059:HSDATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., and R. S. Schumacher, 2019: An updated severe hail and tornado climatology for eastern Colorado. J. Appl. Meteor. Climatol., 58, 22732293, https://doi.org/10.1175/JAMC-D-19-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A. I., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 2014: MPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, https://doi.org/10.1175/BAMS-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R., J. Beauchamp, D. Cecil, and G. Heymsfield, 2015: A prototype hail detection algorithm and hail climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmos. Res., 163, 2435, https://doi.org/10.1016/j.atmosres.2014.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraile, R., A. Castro, and J. Sánchez, 1992: Analysis of hailstone size distributions from a hailpad network. Atmos. Res., 28, 311326, https://doi.org/10.1016/0169-8095(92)90015-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and M. K. Tippett, 2019: Global Ensemble Forecast System (GEFS) predictions of days 1–15 U.S. tornado and hail frequencies. Geophys. Res. Lett., 46, 29222930, https://doi.org/10.1029/2018GL081724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Global Modeling and Assimilation Office (GMAO), 2015: MERRA-2 inst3_3d_asm_nv: 3d, 3-hourly, instantaneous, model-level, assimilation, assimilated meteorological fields v5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 8 September 2019, https://doi.org/10.5067/WWQSXQ8IVFW8.

  • Heymsfield, A. J., I. M. Giammanco, and R. Wright, 2014: Terminal velocities and kinetic energies of natural hailstones. Geophys. Res. Lett., 41, 86668672, https://doi.org/10.1002/2014GL062324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2017: Algorithm description document for version 3.1 of the three-dimensional gridded NEXRAD WSR-88D Radar (GridRad) dataset. 23 pp., http://gridrad.org/pdf/GridRad-v3.1-Algorithm-Description.pdf.

  • Jeong, J.-H., J. Fan, C. R. Homeyer, and Z. Hou, 2020: Understanding hailstone temporal variability and contributing factors over the U.S. Southern Great Plains. J. Climate, 33, 39473966, https://doi.org/10.1175/JCLI-D-19-0606.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and K. Sugden, 2014: Evaluation of sounding-derived thermodynamic and wind-related parameters associated with large hail events. Electron. J. Severe Storms Meteor., 9 (5), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/137.

    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., J. T. Schaefer, and C. A. Doswell, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, https://doi.org/10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2020: An analysis of subdaily severe thunderstorm probabilities for the United States. Wea. Forecasting, 35, 107112, https://doi.org/10.1175/WAF-D-19-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and A. M. Ward, 2019: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., 58, 341364, https://doi.org/10.1175/JAMC-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, S., M. Kunz, and B. Geyer, 2015a: Hail potential in Europe based on a regional climate model hindcast. Geophys. Res. Lett., 42, 10 90410 912, https://doi.org/10.1002/2015GL067118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, S., M. Kunz, and K. Keuler, 2015b: Development and application of a logistic model to estimate the past and future hail potential in Germany. J. Geophys. Res. Atmos., 120, 39393956, https://doi.org/10.1002/2014JD022959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, D. J. Cecil, S. Tanelli, and F. Tridon, 2017: Hail-detection algorithm for the GPM core observatory satellite sensors. J. Appl. Meteor. Climatol., 56, 19391957, https://doi.org/10.1175/JAMC-D-16-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, S. Tanelli, and G. F. Sacco, 2018: Global precipitation measuring dual-frequency precipitation radar observations of hailstorm vertical structure: Current capabilities and drawbacks. J. Appl. Meteor. Climatol., 57, 21612178, https://doi.org/10.1175/JAMC-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, X., C. Liu, D. J. Cecil, and Q. Zhang, 2017: On the detection of hail using satellite passive microwave radiometers and precipitation radar. J. Appl. Meteor. Climatol., 56, 26932709, https://doi.org/10.1175/JAMC-D-17-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisi, L., A. Hering, U. Germann, and O. Martius, 2016a: A 15-year hail streak climatology for the Alpine region. Quart. J. Roy. Meteor. Soc., 144, 14291449, https://doi.org/10.1002/qj.3286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisi, L., O. Martius, A. Hering, M. Kunz, and U. Germann, 2016b: Spatial and temporal distribution of hailstorms in the Alpine region: A long-term, high resolution, radar-based analysis. Quart. J. Roy. Meteor. Soc., 142, 15901604, https://doi.org/10.1002/qj.2771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NWS/SPC, 1955: Severe Weather Database. NOAA/NWS/SPC, accessed 30 October 2019, https://www.spc.noaa.gov/wcm/.

  • OFCM, 2005: Federal Meterological Handbook No. 11—Doppler Radar Meteorological Observations, Part B: Doppler Radar Theory and Meteorology. FCM-H11B-2005, 219 pp., http://www.ofcm.gov/publications/fmh/allfmh2.htm.

  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hail-fall diagnosis. Electron. J. Severe Storms Meteor., 13 (1), http://www.ejssm.org/ojs/index.php/ejssm/article/view/163/113.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and G. J. Holland, 2018: Global estimates of damaging hail hazard. Wea. Climate Extremes, 22, 1023, https://doi.org/10.1016/j.wace.2018.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Punge, H. J., K. M. Bedka, and A. Reinbold, 2017: Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA-INTERIM reanalysis. Atmos. Res., 198, 3443, https://doi.org/10.1016/j.atmosres.2017.07.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J., J. J. Levit, S. J. Weiss, and D. W. McCarthy, 2004: The frequency of large hail over the contiguous United States. 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., 3.3, https://ams.confex.com/ams/pdfpapers/69834.pdf.

  • Schlie, E. E.-J., D. Wuebbles, S. Stevens, R. Trapp, and B. Jewett, 2018: A radar-based study of severe hail outbreaks over the contiguous United States for 2000-2011. Int. J. Climatol., 39, 278291, https://doi.org/10.1002/joc.5805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., V. A. Gensini, and C. R. Homeyer, 2019: Trends in United States large hail environments and observations. npj Climate Atmos. Sci., 2, 25, https://doi.org/10.1038/s41612-019-0103-7.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. A. Ramsay, S. T. Siems, M. J. Manton, J. R. Peter, A. Protat, and A. Pillalamarri, 2020: Radar-based climatology of damaging hailstorms in Brisbane and Sydney, Australia. Quart. J. Roy. Meteor. Soc., 146, 505530, https://doi.org/10.1002/qj.3693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp..

  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, E. D. W. Mitchell, J. T. Johnson, and K. W. Thomas, 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., D. Burgess, A. Seimon, J. T. Allen, J. Snyder, and H. Bluestein, 2018: Rapid-scan radar observations of an Oklahoma tornadic hailstorm producing giant hail. Wea. Forecasting, 33, 12631282, https://doi.org/10.1175/WAF-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 874 0 0
Full Text Views 1620 671 72
PDF Downloads 1587 627 62