Dual Geostationary Lightning Mapper Observations

Scott D. Rudlosky National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, College Park, Maryland
University of Maryland, Earth System Science Interdisciplinary Center, Cooperative Institute for Satellite Earth System Studies, College Park, Maryland

Search for other papers by Scott D. Rudlosky in
Current site
Google Scholar
PubMed
Close
and
Katrina S. Virts University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Katrina S. Virts in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two Geostationary Lightning Mappers (GLMs) now observe spatial and temporal lightning distributions over a vast region. The GOES-16 GLM covers most land areas in the Western Hemisphere, and detects ~4 times as much lightning as the GOES-17 GLM. Although the continents dominate the lightning distributions year-round, each season exhibits widespread lightning over parts of the Atlantic Ocean and within three broad regions over the Pacific. These oceanic regions demonstrate the key role convective organization plays in producing larger, longer-lasting, and more energetic flashes observed by both GLMs over the oceans. Texture within the flash densities reveals a close relationship with the underlying topography, underscored by the complex diurnal cycles observed along coastlines and in mountainous regions. GLM information beyond flash frequency provides additional insights into storm mode and evolution. For example, over the Sierra Madre Occidental, time series reveal initially small, short-duration GLM flashes growing larger and longer as storms grow upscale. These mesoscale convective systems often transition offshore, contributing to an average flash area maximum over the eastern Pacific. Data quality improves during the study period with tuning of the ground system software. GLM artifacts due to solar intrusion and sun glint greatly diminish following the blooming filter installation, and the second-level threshold filter reduces false events along particular subarray boundaries (i.e., bar artifacts). Analysis of the overlap region reveals a pronounced north–south line near 103°W, with the GOES-16 (GOES-17) GLM detecting more flashes to the east (west) of this line.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Scott D. Rudlosky, scott.rudlosky@noaa.gov

Abstract

Two Geostationary Lightning Mappers (GLMs) now observe spatial and temporal lightning distributions over a vast region. The GOES-16 GLM covers most land areas in the Western Hemisphere, and detects ~4 times as much lightning as the GOES-17 GLM. Although the continents dominate the lightning distributions year-round, each season exhibits widespread lightning over parts of the Atlantic Ocean and within three broad regions over the Pacific. These oceanic regions demonstrate the key role convective organization plays in producing larger, longer-lasting, and more energetic flashes observed by both GLMs over the oceans. Texture within the flash densities reveals a close relationship with the underlying topography, underscored by the complex diurnal cycles observed along coastlines and in mountainous regions. GLM information beyond flash frequency provides additional insights into storm mode and evolution. For example, over the Sierra Madre Occidental, time series reveal initially small, short-duration GLM flashes growing larger and longer as storms grow upscale. These mesoscale convective systems often transition offshore, contributing to an average flash area maximum over the eastern Pacific. Data quality improves during the study period with tuning of the ground system software. GLM artifacts due to solar intrusion and sun glint greatly diminish following the blooming filter installation, and the second-level threshold filter reduces false events along particular subarray boundaries (i.e., bar artifacts). Analysis of the overlap region reveals a pronounced north–south line near 103°W, with the GOES-16 (GOES-17) GLM detecting more flashes to the east (west) of this line.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Scott D. Rudlosky, scott.rudlosky@noaa.gov
Save
  • Albrecht, R. I., C. A. Morales, and M. A. F. Silva Dias, 2011: Electrification of precipitating systems over the Amazon: Physical processes of thunderstorm development. J. Geophys. Res., 116, D08209, https://doi.org/10.1029/2010JD014756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, R. I., S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 20512068, https://doi.org/10.1175/BAMS-D-14-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bang, S. D., and E. Zipser, 2019: Tropical oceanic thunderstorms near Kwajalein and the roles of evolution, organization, and forcing in their electrification. J. Geophys. Res. Atmos., 124, 544562, https://doi.org/10.1029/2018JD029320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and S. Hameed, 2017: Seasonal variability in precipitation in central and southern Chile: Modulation by the South Pacific high. J. Climate, 30, 5569, https://doi.org/10.1175/JCLI-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateman, M., and D. Mach, 2020: Preliminary detection efficiency and false alarm rate assessment of the Geostationary Lightning Mapper on the GOES-16 satellite. J. Appl. Remote Sens., 14, 032406, https://doi.org/10.1117/1.JRS.14.032406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitzer, P. M., 2017: Global distribution and properties of continuing current in lightning. J. Geophys. Res. Atmos., 122, 10331041, https://doi.org/10.1002/2016JD025532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 22312248, https://doi.org/10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 40124029, https://doi.org/10.1175/JAS-D-12-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and Coauthors, 2019: Meteorological imagery for the Geostationary Lightning Mapper. J. Geophys. Res. Atmos., 124, 14 28514 309, https://doi.org/10.1029/2019JD030874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., Z. Feng, S. M. Hagos, J. Fast, L. A. T. Machado, and S. T. Martin, 2016: Spatial variability of the background diurnal cycle of deep convection around the GoAmazon2014/5 field campaign sites. J. Appl. Meteor. Climatol., 55, 15791598, https://doi.org/10.1175/JAMC-D-15-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and K. M. Buffalo, 2007: Environmental control of cloud-to-cround lightning polarity in severe storms. Mon. Wea. Rev., 135, 13271353, https://doi.org/10.1175/MWR3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, https://doi.org/10.1016/j.atmosres.2012.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, J. R. Mecikalski, and X. Li, 2020: Rapid scan visible imagery from the Geostationary Lightning Mapper (GLM) at 2.5-minute intervals. Mon. Wea. Rev., 148, 51055112, https://doi.org/10.1175/MWR-D-20-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X. Lin, and J. T. Bacmeister, 2008: Frequency distribution of daily ITCZ patterns over the western–central Pacific. J. Climate, 21, 42074222, https://doi.org/10.1175/2008JCLI1973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res., 108, 4005, https://doi.org/10.1029/2002JD002347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, https://doi.org/10.1109/TEMC.2009.2023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • dos Santos, M. J., F. Silva, M. A. Dias, and E. D. Freitas, 2014: Influence of local circulations on wind, moisture, and precipitation close to Manaus City, Amazon Region, Brazil. J. Geophys. Res. Atmos., 119, 13 23313 249, https://doi.org/10.1002/2014JD021969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edgington, S., C. Tillier, and M. Anderson, 2019: Design, calibration, and on-orbit testing of the Geostationary Lightning Mapper on the GOES-R series weather satellite. Proc. SPIE, 11180, 1118040, https://doi.org/10.1117/12.2536063.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., S. Stevenson, and R. Rabin, 2018: Evolution of GLM observed total lightning in Hurricane Maria (2017) during the period of maximum intensity. Mon. Wea. Rev., 146, 16411666, https://doi.org/10.1175/MWR-D-18-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., Y. Wang, J. Gao, and E. R. Mansell, 2019: Variational assimilation of radar data and GLM lightning-derived water vapor for the short-term forecasts of high-impact convective events. Mon. Wea. Rev., 147, 40454069, https://doi.org/10.1175/MWR-D-18-0421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and R. C. Muñoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133, 22462261, https://doi.org/10.1175/MWR2972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GOES-R Algorithm Working Group, 2017: GOES R Series product definition and users’ guide. Vol. 3, 416-R-PUG-L1B-0347, Level 1B products, 442 pp., https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf.

  • Goss, H., 2020: Lightning research flashes forward. Eos, Trans. Amer. Geophys. Union, 101, https://doi.org/10.1029/2020EO142805.

  • Haffke, C., and G. Magnusdottir, 2015: Diurnal cycle of the South Pacific Convergence Zone in 30 years of satellite images. J. Geophys. Res. Atmos., 120, 90599070, https://doi.org/10.1002/2015JD023436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., A. M. Durán-quesada, J. A. Amador, and E. J. Alfaro, 2015: The Caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the intra-Americas sea: A proposed dynamical mechanism. Geografiska Ann., 97, 4159, https://doi.org/10.1111/geoa.12085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., A. O. Fierro, Y. Wang, J. Gao, and E. R. Mansell, 2020: Exploring the assimilation of GLM-derived water vapor mass in a cycled 3DVAR framework for the short-term forecasts of high-impact convective events. Mon. Wea. Rev., 148, 10051028, https://doi.org/10.1175/MWR-D-19-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., R. H. Holzworth, J. B. Brundell, and C. J. Rodger, 2012: Relative detection efficiency of the world wide lightning location network. Radio Sci., 47, RS6005, https://doi.org/10.1029/2012RS005049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenniskens, P., and Coauthors, 2018: Detection of meteoroid impacts by the Geostationary Lightning Mapper on the GOES-16 satellite. Meteor. Planet. Sci., 53, 24452469, https://doi.org/10.1111/maps.13137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, R., M. Xue, A. O. Fierro, Y. Jung, C. Liu, E. R. Mansell, and D. R. MacGorman, 2020: Assimilation of GOES-R Geostationary Lightning Mapper flash extent density data in GSI EnKF for the analysis and short-term forecast of a mesoscale convective system. Mon. Wea. Rev., 148, 21112133, https://doi.org/10.1175/MWR-D-19-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapierre, J., M. Hoekzema, M. Stock, C. Merrill, and S. C. Thangaraj, 2019: Earth Networks Lightning Network and Dangerous Thunderstorm Alerts. 2019 11th Asia-Pacific Int. Conf. on Lightning (APL), Hong Kong, IEEE, 1–5, https://doi.org/10.1109/APL.2019.8816032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., D. J. Cecil, E. J. Zipser, K. Kronfeld, and R. Robertson, 2012: Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res., 117, D06212, https://doi.org/10.1029/2011JD017123.

    • Search Google Scholar
    • Export Citation
  • Mach, D. M., 2020: Geostationary Lightning Mapper clustering algorithm stability. J. Geophys. Res. Atmos., 125, e2019JD031900, https://doi.org/10.1029/2019JD031900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., H. J. Christian, R. J. Blakeslee, D. J. Boccipio, and S. J. Goodman, and W. L. Boeck, 2007: Performance assessment of the optical transient detector and lightning imaging sensor. J. Geophys. Res., 112, D09210, https://doi.org/10.1029/2006JD007787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., R. J. Blakeslee, M. G. Bateman, and J. C. Bailey, 2010: Comparisons of total currents based on storm location, polarity, and flash rates derived from high-altitude aircraft overflights. J. Geophys. Res., 115, D03201, https://doi.org/10.1029/2009JD012240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and Coauthors, 2018: Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmos. Chem. Phys., 18, 64616482, https://doi.org/10.5194/acp-18-6461-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 11401156, https://doi.org/10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, Á. G., J. Díaz-Lobatón, X. Chourio, and M. J. Stock, 2016: Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers. Atmos. Res., 172–173, 147162, https://doi.org/10.1016/j.atmosres.2015.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., and R. Garreaud, 2005: Dynamics of the low-level jet off the west coast of subtropical South America. Mon. Wea. Rev., 133, 36613677, https://doi.org/10.1175/MWR3074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, M. J., and R. K. Said, 2020: Comparisons of lightning rates and properties from the U.S. National Lightning Detection Network (NLDN) and GLD360 with GOES-16 Geostationary Lightning Mapper and Advanced Baseline Imager data. J. Geophys. Res. Atmos., 125, e2019JD031172, https://doi.org/10.1029/2019JD031172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nag, A., and K. L. Cummins, 2017: Negative first stroke leader characteristics in cloud-to-ground lightning over land and ocean. Geophys. Res. Lett., 44, 19731980, https://doi.org/10.1002/2016GL072270.

    • Search Google Scholar
    • Export Citation
  • NASA, 2018: GOES-R Series Data Book. NASA publication NP-2018-1-155-GSFC, 240 pp., https://www.goes-r.gov/downloads/resources/documents/GOES-RSeriesDataBook.pdf.

  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743, https://doi.org/10.1175/2008JHM939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortéga, P., and T. Guignes, 2007: Lightning activity analyses with respect to the SPCZ location. Geophys. Res. Lett., 34, L11807, https://doi.org/10.1029/2007GL029730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, https://doi.org/10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., J. M. Sieglaff, and J. L. Cintineo, 2020: Remote sensing of volcanic ash with the GOES-R Series. The GOES-R Series, S. Goodman et al., Eds., Elsevier, 103–124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Businger, 2009: Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833848, https://doi.org/10.1175/2008JAMC1817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., 2019: Research applications for the Geostationary Lightning Mapper operational lightning flash data product. J. Geophys. Res. Atmos., 124, 10 20510 231, https://doi.org/10.1029/2019JD031054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., 2021: Where are the most extraordinary lightning megaflashes in the Americas? Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-20-0178.1, in press.

    • Search Google Scholar
    • Export Citation
  • Peterson, M., W. Deierling, C. Liu, D. Mach, and C. Kalb, 2017: The properties of optical lightning flashes and the clouds they illuminate. J. Geophys. Res. Atmos., 122, 423442, https://doi.org/10.1002/2016JD025312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., S. Rudlosky, and D. Zhang, 2020: Changes to the appearance of optical lightning flashes observed from space according to thunderstorm organization and structure. J. Geophys. Res. Atmos., 125, e2019JD031087, https://doi.org/10.1029/2019JD031087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze, 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., J. B. Brundell, R. L. Dowden, and N. R. Thomson, 2004: Location accuracy of long distance VLF lightning location network. Ann. Geophys., 22, 747758, https://doi.org/10.5194/angeo-22-747-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S., S. Goodman, K. Calhoun, C. Schultz, A. Back, B. Kuligowski, S. Stevenson, and C. Gravelle, 2020: Geostationary Lightning Mapper value assessment. NOAA Tech. Rep. NESDIS 153, 46 pp., https://doi.org/10.25923/2616-3v73.

    • Crossref
    • Export Citation
  • Rudlosky, S., S. Goodman, K. S. Virts, and E. C. Bruning, 2019: Initial Geostationary Lightning Mapper observations. Geophys. Res. Lett., 46, 10971104, https://doi.org/10.1029/2018GL081052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., K. A. Hilburn, A. Clayton, B. Fuchs, and S. D. Miller, 2020: Evaluating Geostationary Lightning Mapper flash rates within intense convective storms. J. Geophys. Res. Atmos., 125, e2020JD032827, https://doi.org/10.1029/2020JD032827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Said, R. K., M. B. Cohen, and U. S. Inan, 2013: Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos., 118, 69056915, https://doi.org/10.1002/jgrd.50508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., V. P. Andrews, K. D. Genareau, and A. R. Naeger, 2020: Observations of lightning in relation to transitions in volcanic activity during the 3 June 2018 Fuego Eruption. Sci. Rep., 10, 18015, https://doi.org/10.1038/s41598-020-74576-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. C., 2020: GOES-R series spacecraft and instruments. The GOES-R Series, S. Goodman et al., Eds., Elsevier, 13–21.

    • Crossref
    • Export Citation
  • Thornton, J. A., K. S. Virts, R. H. Holzworth, and T. P. Mitchell, 2017: Lightning enhancement over major oceanic shipping lanes. Geophys. Res. Lett., 44, 91029111, https://doi.org/10.1002/2017GL074982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, https://doi.org/10.1175/BAMS-D-12-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2015: Diurnal and seasonal lightning variability over the Gulf Stream and the Gulf of Mexico. J. Atmos. Sci., 72, 26572665, https://doi.org/10.1175/JAS-D-14-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and X. Jiang, 2015: Tropical meteorology: Intertropical convergence zone. Encyclopedia of Atmospheric Sciences, 2nd ed. G. R. North, J. Pyle, and F. Zhang, Eds., Elsevier, 121–131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., H. Liu, W. Dong, Y. Zhang, and Q. Meng, 2018: Characteristics of lightning flashes associated with the charge layer near the 0°C isotherm in the stratiform region of mesoscale convective systems. J. Geophys. Res. Atmos., 123, 95249541, https://doi.org/10.1029/2018JD028569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. A., D. R. MacGorman, and K. M. Calhoun, 2012: Lightning in the anvils of supercell thunderstorms. Mon. Wea. Rev., 140, 20642079, https://doi.org/10.1175/MWR-D-11-00312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, https://doi.org/10.1029/2001JD000380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., T. Chan, and D. Boccippio, 2004: Islands as miniature continents: Another look at the land-ocean lightning contrast. J. Geophys. Res., 109, D16206, https://doi.org/10.1029/2003JD003833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wodzicki, K. R., and A. D. Rapp, 2016: Long-term characterization of the Pacific ITCZ using TRMM, GPCP, and ERA-Interim. J. Geophys. Res. Atmos., 121, 31533170, https://doi.org/10.1002/2015JD024458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and K. L. Cummins, 2020: Time evolution of satellite-based optical properties in lightning flashes, and its impact on GLM flash detection. J. Geophys. Res. Atmos., 125, e2019JD032024, https://doi.org/10.1029/2019JD032024.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 659 0 0
Full Text Views 1030 359 18
PDF Downloads 1010 344 17