Downstream Evolution and Coastal-to-Inland Transition of Landfalling Lake-Effect Systems

Thomas M. Gowan aDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Thomas M. Gowan in
Current site
Google Scholar
PubMed
Close
,
W. James Steenburgh aDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
, and
Justin R. Minder bDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Justin R. Minder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The distribution and intensity of lake- and sea-effect (hereafter lake-effect) precipitation are strongly influenced by the mode of landfalling lake-effect systems. Here, we used idealized large-eddy simulations to investigate the downstream evolution and coastal-to-inland transition of two lake-effect modes: 1) a long-lake-axis-parallel (LLAP) band generated by an oval body of water (hereafter lake; e.g., Lake Ontario) and 2) broad-coverage, open-cell convection generated by an open lake (e.g., Sea of Japan). Under identical atmospheric conditions and lake-surface temperatures, the oval lake generates a LLAP band with heavy precipitation along the midlake axis, whereas the open lake generates broad-coverage, open-cell convection with widespread, light accumulations. Over the oval lake, the LLAP band features a thermally forced and diabatically enhanced cross-band secondary circulation with convergence and ascent over the midlake axis. Downstream of the lake, flanking airstreams that avoid lake modification merge beneath the band where they experience sublimational cooling, producing a cold pool. At the upstream edge of the cold pool, a coastal baroclinic zone forms. Above this zone, ascent and hydrometeor mass growth are maximized, resulting in an inland precipitation maximum due to subsequent hydrometeor transport and fallout. Over the open lake, individual open cells grow larger and stronger with overwater extent, but a convective-to-stratiform transition begins at the coast. Here, convective vigor decays, mesoscale ascent begins, and enhanced hydrometeor growth results in an inland precipitation maximum. These results highlight variations in the coastal-to-inland transition of lake-effect systems that ultimately influence the distribution and intensity of lake-effect precipitation.

SIGNIFICANCE STATEMENT

Lake-effect snow impacts many urban and rural communities, disrupting transportation and commerce, but benefiting regional winter-sports economies. Using high-resolution computer modeling with simple lake shapes, we simulated two common types of landfalling lake-effect storms: 1) intense bands that sometimes produce extreme but highly localized snowfall and 2) scattered cells that typically generate widespread lake-effect snow showers. Our analysis describes how these distinct storms transform as they move inland, affecting the distribution and intensity of snowfall over downstream communities. Knowledge of this transformation is important for understanding lake-effect storms and improving forecasts of lake-effect snowfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 25 March 2022 to correct a typographical error that appeared in section 2c when originally published.

Corresponding author: Thomas M. Gowan, tom.gowan@utah.edu

Abstract

The distribution and intensity of lake- and sea-effect (hereafter lake-effect) precipitation are strongly influenced by the mode of landfalling lake-effect systems. Here, we used idealized large-eddy simulations to investigate the downstream evolution and coastal-to-inland transition of two lake-effect modes: 1) a long-lake-axis-parallel (LLAP) band generated by an oval body of water (hereafter lake; e.g., Lake Ontario) and 2) broad-coverage, open-cell convection generated by an open lake (e.g., Sea of Japan). Under identical atmospheric conditions and lake-surface temperatures, the oval lake generates a LLAP band with heavy precipitation along the midlake axis, whereas the open lake generates broad-coverage, open-cell convection with widespread, light accumulations. Over the oval lake, the LLAP band features a thermally forced and diabatically enhanced cross-band secondary circulation with convergence and ascent over the midlake axis. Downstream of the lake, flanking airstreams that avoid lake modification merge beneath the band where they experience sublimational cooling, producing a cold pool. At the upstream edge of the cold pool, a coastal baroclinic zone forms. Above this zone, ascent and hydrometeor mass growth are maximized, resulting in an inland precipitation maximum due to subsequent hydrometeor transport and fallout. Over the open lake, individual open cells grow larger and stronger with overwater extent, but a convective-to-stratiform transition begins at the coast. Here, convective vigor decays, mesoscale ascent begins, and enhanced hydrometeor growth results in an inland precipitation maximum. These results highlight variations in the coastal-to-inland transition of lake-effect systems that ultimately influence the distribution and intensity of lake-effect precipitation.

SIGNIFICANCE STATEMENT

Lake-effect snow impacts many urban and rural communities, disrupting transportation and commerce, but benefiting regional winter-sports economies. Using high-resolution computer modeling with simple lake shapes, we simulated two common types of landfalling lake-effect storms: 1) intense bands that sometimes produce extreme but highly localized snowfall and 2) scattered cells that typically generate widespread lake-effect snow showers. Our analysis describes how these distinct storms transform as they move inland, affecting the distribution and intensity of snowfall over downstream communities. Knowledge of this transformation is important for understanding lake-effect storms and improving forecasts of lake-effect snowfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 25 March 2022 to correct a typographical error that appeared in section 2c when originally published.

Corresponding author: Thomas M. Gowan, tom.gowan@utah.edu
Save
  • Andersson, T. , and N. Gustafsson , 1994: Coast of departure and coast of arrival: Two important concepts for the formation and structure of convective snowbands over seas and lakes. Mon. Wea. Rev., 122, 10361049, https://doi.org/10.1175/1520-0493(1994)122<1036:CODACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B. , and J. Zhang , 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D. , S.-H. Chou , and W. P. Byerly , 1983: The influence of coastal shape on winter mesoscale air–sea interaction. Mon. Wea. Rev., 111, 245252, https://doi.org/10.1175/1520-0493(1983)111<0245:TIOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergmaier, P. T. , B. Geerts , L. S. Campbell , and W. J. Steenburgh , 2017: The OWLeS IOP2b lake-effect snowstorm: Dynamics of the secondary circulation. Mon. Wea. Rev., 145, 24372459, https://doi.org/10.1175/MWR-D-16-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R. , 1983: The midwest snow storm of 8–11 December 1977. Mon. Wea. Rev., 111, 253272, https://doi.org/10.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R. , 1986: Cloud and motion fields in open-cell convection over Lake Michigan. Preprints, 23rd Conf. on Radar Meteorology and Conf. on Cloud Physics, Snowmass, CO, Amer. Meteor. Soc., JP202–JP205.

  • Braham, R. R. , and R. D. Kelly , 1982: Lake-effect snow storms on Lake Michigan, USA. Cloud Dynamics, E. M. Agee and T. Asai, Eds., D. Reidel, 87–101.

    • Crossref
    • Export Citation
  • Bryan, G. H. , and J. M. Fritsch , 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H. , J. C. Wyngaard , and J. M. Fritsch , 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burt, C. A. , 2007: Extreme Weather. 2nd ed. W. W. Norton and Company, 320 pp.

  • Byrd, G. P. , R. A. Anstett , J. E. Heim , and D. M. Usinski , 1991: Mobile sounding observations of lake-effect snowbands in western and central New York. Mon. Wea. Rev., 119, 23232332, https://doi.org/10.1175/1520-0493(1991)119<2323:MSOOLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S. , and W. J. Steenburgh , 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 24612478, https://doi.org/10.1175/MWR-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S. , W. J. Steenburgh , P. G. Veals , T. W. Letcher , and J. R. Minder , 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 17291748, https://doi.org/10.1175/MWR-D-15-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, D. J. , D. J. Kirshbaum , and S. L. Gray , 2012: Under what conditions does embedded convection enhance orographic precipitation? Quart. J. Roy. Meteor. Soc., 138, 391406, https://doi.org/10.1002/qj.926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H. , 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, https://doi.org/10.1002/qj.49708135027.

  • Dudhia, J. , 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, PSU and NCAR, 49–50.

  • Edson, J. B. , and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eipper, D. T. , S. J. Greybush , G. S. Young , S. Saslo , T. D. Sikora , and R. D. Clark , 2019: Lake-effect snowbands in baroclinic environments. Wea. Forecasting, 34, 16571674, https://doi.org/10.1175/WAF-D-18-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eito, H. , M. Murakami , C. Muroi , T. Kato , S. Hayashi , H. Kuroiwa , and M. Yoshizaki , 2010: The structure and formation mechanism of transversal cloud bands associated with the Japan-Sea Polar-airmass convergence zone. J. Meteor. Soc. Japan, 88, 625648, https://doi.org/10.2151/jmsj.2010-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gowan, T. M. , 2019: Trajectories (personal GitHub page). Accessed 9 October 2019, https://github.com/tomgowan/trajectories.

  • Han, M. , S. A. Braun , T. Matsui , and C. R. Williams , 2013: Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements. J. Geophys. Res. Atmos., 118, 14011419, https://doi.org/10.1002/jgrd.50115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R. , 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138150, https://doi.org/10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R. , and R. R. Braham Jr. , 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, https://doi.org/10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishihara, M. , H. Sakakibara , and Z. Yanagisawa , 1989: Doppler radar analysis of the structure of mesoscale snow bands developed between the winter monsoon and the land breeze. J. Meteor. Soc. Japan, 67, 503520, https://doi.org/10.2151/jmsj1965.67.4_503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A. , J. Dudhia , J. F. González-Rouco , J. Navarro , J. P. Montávez , and E. García-Bustamante , 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. D. , 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41, 18161826, https://doi.org/10.1175/1520-0469(1984)041<1816:HRABLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J. , and R. B. Smith , 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134, 11831199, https://doi.org/10.1002/qj.274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R. , 1993: Mean circulations of boundary-layer rolls in lake-effect snow storms. Bound.-Layer Meteor., 63, 293315, https://doi.org/10.1007/BF00710463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R. , and Coauthors, 2017: The Ontario winter lake-effect systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, https://doi.org/10.1175/BAMS-D-15-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. , 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 360 pp.

    • Crossref
    • Export Citation
  • Laird, N. F. , J. E. Walsh , and D. A. R. Kristovich , 2003a: Model simulations examining the relationship of lake-effect morphology to lake shape, wind direction, and wind speed. Mon. Wea. Rev., 131, 21022111, https://doi.org/10.1175/1520-0493(2003)131<2102:MSETRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F. , D. A. R. Kristovich , and J. E. Walsh , 2003b: Idealized model simulations examining the mesoscale structure of winter lake-effect circulations. Mon. Wea. Rev., 131, 206221, https://doi.org/10.1175/1520-0493(2003)131<0206:IMSETM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavoie, R. L. , 1972: A mesoscale numerical model of lake-effect storms. J. Atmos. Sci., 29, 10251040, https://doi.org/10.1175/1520-0469(1972)029<1025:AMNMOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M. , and G. H. Bryan , 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 18411850, https://doi.org/10.1175/MWR-D-15-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazon, J. , S. Niemela , D. Pino , H. Savijärvi , and T. Vihma , 2015: Snow bands over the Gulf of Finland in wintertime. Tellus, 67A, 25102, https://doi.org/10.3402/tellusa.v67.25102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miltenberger, A. K. , S. Pfahl , and H. Wernli , 2013: An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO. Geosci. Model Dev., 6, 19892004, https://doi.org/10.5194/gmd-6-1989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R. , T. W. Letcher , L. S. Campbell , P. G. Veals , and W. J. Steenburgh , 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, https://doi.org/10.1175/MWR-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R. , W. M. Bartolini , C. Spence , N. R. Hedstrom , P. D. Blanken , and J. D. Lenters , 2020: Characterizing and constraining uncertainty associated with surface and boundary layer turbulent fluxes in simulations of lake-effect snowfall. Wea. Forecasting, 35, 467488, https://doi.org/10.1175/WAF-D-19-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M. , T. L. Clark , and W. D. Hall , 1994: Numerical simulations of convective snow clouds over the seas of Japan; two-dimensional simulations of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 4362, https://doi.org/10.2151/jmsj1965.72.1_43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M. , 1987: On the formation of a convergent cloud band over the Japan Sea in winter; a prediction experiment. J. Meteor. Soc. Japan, 65, 871883, https://doi.org/10.2151/jmsj1965.65.6_871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M. , 1991: Further numerical study on the formation of the convergent cloud band over the Japan Sea in winter. J. Meteor. Soc. Japan, 69, 419428, https://doi.org/10.2151/jmsj1965.69.3_419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M. , M. Ikawa , S. Yoshizumi , and T. Yoshida , 1986: On the formation of a convergent cloud band over the Japan Sea in winter; numerical experiments. J. Meteor. Soc. Japan, 64, 841855, https://doi.org/10.2151/jmsj1965.64.6_841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S. , K. Iwanami , R. Misumi , S.-G. Park , and T. Kobayashi , 2005: A classification of snow clouds by Doppler radar observations at Nagaoka, Japan. SOLA, 1, 161164, https://doi.org/10.2151/sola.2005-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A. , 1987: Operational forecasting of lake effect snowfall in western and central New York. Wea. Forecasting, 2, 310321, https://doi.org/10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A. , W. R. Snyder , and J. S. Waldstreicher , 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. , G. Vaugh , and D. M. Schultz , 2013: Snowbands over the English channel and Irish sea during cold-air outbreaks. Quart. J. Roy. Meteor. Soc., 139, 17471761, https://doi.org/10.1002/qj.2079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohigashi, T. , and K. Tsuboki , 2007: Shift and intensification processes of the Japan-Sea polar-airmass convergence zone associated with the passage of a mid-tropospheric cold core. J. Meteor. Soc. Japan, 85, 633662, https://doi.org/10.2151/jmsj.85.633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onton, D. J. , and W. J. Steenburgh , 2001: Diagnostic and sensitivity studies of the 7 December 1998 Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 129, 13181338, https://doi.org/10.1175/1520-0493(2001)129<1318:DASSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, R., Jr. , and R. Sykes Jr. , 1966: Mesoscale study of a lake effect snow storm. Mon. Wea. Rev., 94, 495507, https://doi.org/10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinking, R. F. , and Coauthors, 1993: The Lake Ontario Winter Storms (LOWS) project. Bull. Amer. Meteor. Soc., 74, 18281850, https://doi.org/10.1175/1520-0477-74-10-1828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K. , M. Murakami , T. Matsuo , and H. Mizuno , 1996: Sensitivity experiments on the orographic snowfall over the mountainous region of northern Japan. J. Meteor. Soc. Japan, 74, 797813, https://doi.org/10.2151/jmsj1965.74.6_797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakakibara, H. , M. Ishihara , and Z. Yanagisawa , 1988: Classification of mesoscale snowfall systems observed in western Hokuriku during a heavy snowfall period in January 1984. J. Meteor. Soc. Japan, 66, 193199, https://doi.org/10.2151/jmsj1965.66.1_193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J. , 1963: General circulation experiments with the primitive equations. Part I: The basic experiments. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L. , 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260, https://doi.org/10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J. , 2014: Secrets of the Greatest Snow on Earth. Utah State University Press, 186 pp.

  • Steenburgh, W. J. , and L. S. Campbell , 2017: The OWLeS IOP2b lake-effect snowstorm: Shoreline geometry and the mesoscale forcing of precipitation. Mon. Wea. Rev., 145, 24212436, https://doi.org/10.1175/MWR-D-16-0460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J. , and S. Nakai , 2020: Perspectives on sea- and lake-effect precipitation from Japan’s “Gosetsu chitai.” Bull. Amer. Meteor. Soc., 101, E58E72, https://doi.org/10.1175/BAMS-D-18-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, S. M. , and R. J. Ballentine , 2008: Structure and characteristics of long lake axis-parallel lake-effect storms. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 13B.6, https://ams.confex.com/ams/24SLS/techprogram/paper_142021.htm.

  • Steiger, S. M. , and Coauthors, 2013: Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel–lake-effect storms by the Doppler on Wheels. Mon. Wea. Rev., 141, 28212840, https://doi.org/10.1175/MWR-D-12-00226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K. , and J. Simpson , 1989: Modeling study of a tropical squall-type convective line. J. Atmos. Sci., 46, 177202, https://doi.org/10.1175/1520-0469(1989)046<0177:MSOATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G. , P. R. Field , R. M. Rasmussen , and W. D. Hall , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J. , 2005: Numerical study of the 10 January 1998 lake-effect bands observed during lake-ice. J. Atmos. Sci., 62, 32323249, https://doi.org/10.1175/JAS3462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, K. , and T. Fujita , 1967: A satellite meteorological study of evaporation and cloud formation over the western Pacific under the influence of the winter monsoon. J. Meteor. Soc. Japan, 45, 232250, https://doi.org/10.2151/jmsj1965.45.3_232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G. , W. J. Steenburgh , and L. S. Campbell , 2018: Factors affecting the inland and orographic enhancement of lake-effect precipitation over the Tug Hill Plateau. Mon. Wea. Rev., 146, 17451762, https://doi.org/10.1175/MWR-D-17-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, D. , B. Geerts , X. Jing , P. T. Bergmaier , J. R. Minder , W. J. Steenburgh , and L. S. Campbell , 2016: Understanding heavy lake-effect snowfall: The vertical structure of radar reflectivity in a deep snowband over and downwind of Lake Ontario. Mon. Wea. Rev., 144, 42214244, https://doi.org/10.1175/MWR-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, T. K. , W. J. Steenburgh , and G. G. Mace , 2019: Characteristics of sea-effect clouds and precipitation over the Sea of Japan region as observed by A-Train satellites. J. Geophys. Res. Atmos., 124, 2018JD029586, https://doi.org/10.1029/2018JD029586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E. , and R. A. Houze Jr. , 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 417 0 0
Full Text Views 624 150 8
PDF Downloads 616 149 20