• Androulidakis, Y. S., V. H. Kourafalou, G. R. Halliwell Jr., M. Le Hénaff, H.-S. Kang, M. Mehari, and R. Atlas, 2016: Hurricane interaction with the upper ocean in the Amazon–Orinoco plume region. Ocean Dyn., 66, 15591588, https://doi.org/10.1007/s10236-016-0997-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argo, 2020: Argo float data and metadata from global data assembly centre (Argo GDAC). SEANOE, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/doi:10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., S. Taraphdar, L. R. Leung, G. R. Foltz, and J. A. Knaff, 2014: Cyclone–cyclone interactions through the ocean pathway. Geophys. Res. Lett., 41, 68556862, https://doi.org/10.1002/2014GL061489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, R., 2017: Hurricane Maria discussion number 6. National Hurricane Center, NOAA, accessed 22 August 2019, https://www.nhc.noaa.gov/archive/2017/al15/al152017.discus.006.shtml?

  • Berg, R., 2018: National Hurricane Center tropical cyclone report: Hurricane Jose (5–22 September 2017). NHC Tech. Rep. AL122017, 36 pp., https://www.nhc.noaa.gov/data/tcr/AL122017_Jose.pdf.

  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., A. S. Latto, and R. Berg, 2018: National Hurricane Center tropical cyclone report: Hurricane Irma (30 August–12 September 2017). NHC Tech. Rep. AL112017, 111 pp., https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf.

  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christophersen, H., A. Aksoy, J. Dunion, and S. Aberson, 2018: Composite impact of Global Hawk unmanned aircraft dropwindsondes on tropical cyclone analyses and forecasts. Mon. Wea. Rev., 146, 22972314, https://doi.org/10.1175/MWR-D-17-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, M., and K. Haines, 1996: Altimetric assimilation with water property conservation. J. Geophys. Res., 101, 10591078, https://doi.org/10.1029/95JC02902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., and M. J. Mueller, 2020: An analysis of alternatives for the COSMIC-2 constellation in the context of Global Observing System Simulation experiments. Wea. Forecasting, 35, 5166, https://doi.org/10.1175/WAF-D-19-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, Z., Z. Pu, V. Tallapragada, R. Atlas, and C. S. Ruf, 2019: A preliminary impact study of CYGNSS ocean surface wind speeds on numerical simulations of hurricanes. Geophys. Res. Lett., 46, 29842992, https://doi.org/10.1029/2019GL082236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor.. Soc., 131, 35833604, https://doi.org/10.1256/qj.05.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139, 37983808, https://doi.org/10.1175/MWR-D-10-05019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2015: Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophys. Res. Lett., 42, 71317138, https://doi.org/10.1002/2015GL065378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., G. Goni, M. Baringer, and D. Volkov, 2018: What caused the accelerated sea level changes along the U.S. East Coast during 2010–2015? Geophys. Res. Lett., 45, 13367, https://doi.org/10.1029/2018GL081183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 446, https://doi.org/10.3389/fmars.2019.00446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., and Coauthors, 2017: Impact of assimilating underwater glider data on Hurricane Gonzalo (2014) forecasts. Wea. Forecasting, 32, 11431159, https://doi.org/10.1175/WAF-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, https://doi.org/10.1109/48.972073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ffield, A., 2007: Amazon and Orinoco River plumes and NBC rings: Bystanders or participants in hurricane events? J. Climate, 20, 316333, https://doi.org/10.1175/JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujii, Y., and Coauthors, 2019: Observing system evaluation based on ocean data assimilation and prediction systems: On-going challenges and future vision for designing/supporting ocean observational networks. Front. Mar. Sci., 6, 417, https://doi.org/10.3389/fmars.2019.00417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallay, M. J. M., and Coauthors, 2019: Assessing Orinoco River sediment discharge trend using MODIS satellite images. J. South Amer. Earth Sci., 91, 320331, https://doi.org/10.1016/j.jsames.2019.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goes, J. I., and Coauthors, 2014: Influence of the Amazon River discharge on the biogeography of phytoplankton communities in the western tropical North Atlantic. Prog. Oceanogr., 120, 2940, https://doi.org/10.1016/j.pocean.2013.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and W. E. Johns, 2001: A census of North Brazil Current rings observed from TOPEX/POSEIDON altimetry: 1992–1998. Geophys. Res. Lett., 28, 14, https://doi.org/10.1029/2000GL011717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and R. Domingues, 2019: Tropical cyclones: Upper-ocean conditions in the Gulf of Mexico during Hurricane Michael [in “State of the Climate in 2018”]. Bull. Amer. Meteor. Soc., 100 (9), S135S137, https://doi.org/10.1175/2019BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and Coauthors, 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190197, https://doi.org/10.5670/oceanog.2009.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and Coauthors, 2017: Autonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts. Oceanography, 30, 92103, https://doi.org/10.5670/oceanog.2017.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., G. K. Corlett, J. J. Remedios, E. J. Noyes, and D. T. Llewellyn-Jones, 2007: The global trend in sea surface temperature from 20 years of Advanced Very High Resolution Radiometer data. J. Climate, 20, 12551264, https://doi.org/10.1175/JCLI4049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S., F. Marks, X. Zhang, J.-W. Bao, K.-S. Yeh, and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, https://doi.org/10.1175/2010MWR3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouveia, N. A., D. F. M. Gherardi, and L. E. O. C. Aragão, 2019: The role of the Amazon River plume on the intensification of the hydrological cycle. Geophys. Res. Lett., 46, 12 22112 229, https://doi.org/10.1029/2019GL084302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, https://doi.org/10.1016/j.ocemod.2003.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., L. K. Shay, S. D. Jacob, O. M. Smedstad, and E. W. Uhlhorn, 2008: Improving ocean model initialization for coupled tropical cyclone forecast models using GODAE nowcasts. Mon. Wea. Rev., 136, 25762591, https://doi.org/10.1175/2007MWR2154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., L. K. Shay, J. K. Brewster, and W. J. Teague, 2011: Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon. Wea. Rev., 139, 921945, https://doi.org/10.1175/2010MWR3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., A. Srinivasan, V. H. Kourafalou, H. Yang, D. Willey, M. Le Hénaff, and R. Atlas, 2014: Rigorous evaluation of a fraternal twin ocean OSSE system for the open Gulf of Mexico. J. Atmos. Oceanic Technol., 31, 105130, https://doi.org/10.1175/JTECH-D-13-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., S. Gopalakrishnan, F. Marks, and D. Willey, 2015: Idealized study of ocean impacts on tropical cyclone intensity forecasts. Mon. Wea. Rev., 143, 11421165, https://doi.org/10.1175/MWR-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., M. Mehari, M. Le Hénaff, V. H. Kourafalou, Y. S. Androulidakis, H.-S. Kang, and R. Atlas, 2017a: North Atlantic Ocean OSSE System: Evaluation of operational ocean observing system components and supplemental seasonal observations for potentially improving tropical cyclone prediction in coupled systems. J. Oper. Oceanogr., 10, 154175, https://doi.org/10.1080/1755876X.2017.1322770.

    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., M. Mehari, L. K. Shay, V. H. Kourafalou, H. Kang, H.-S. Kim, J. Dong, and R. Atlas, 2017b: OSSE quantitative assessment of rapid response prestorm ocean surveys to improve coupled tropical cyclone prediction. J. Geophys. Res. Oceans, 122, 57295748, https://doi.org/10.1002/2017JC012760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., G. J. Goni, M. F. Mehari, V. H. Kourafalou, M. Baringer, and R. Atlas, 2020: OSSE assessment of underwater glider arrays to improve ocean model initialization for tropical cyclone prediction. J. Atmos. Oceanic Technol., 37, 467487, https://doi.org/10.1175/JTECH-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hlywiak, J., and D. S. Nolan, 2019: The influence of oceanic barrier layers on tropical cyclone intensity as determined through idealized, coupled numerical simulations. J. Phys. Oceanogr., 49, 17231745, https://doi.org/10.1175/JPO-D-18-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, J. L., 1958: The significance probability of the Smirnov two-sample test. Ark. Mat., 3, 469486, https://doi.org/10.1007/BF02589501.

  • Kasahara, A., and G. W. Platzman, 1963: Interaction of a hurricane with the steering flow and its effect upon the hurricane trajectory. Tellus, 15, 321335, https://doi.org/10.3402/tellusa.v15i4.8863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., C. Lozano, V. Tallapragada, D. Iredell, D. Sheinin, H. L. Tolman, V. M. Gerald, and J. Sims, 2014: Performance of ocean simulations in the coupled HWRF–HYCOM model. J. Atmos. Oceanic Technol., 31, 545559, https://doi.org/10.1175/JTECH-D-13-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2017: Hurricane Irma discussion number 13. National Hurricane Center, NOAA, accessed 20 August 2019, https://www.nhc.noaa.gov/archive/2017/al11/al112017.discus.013.shtml.

  • Legler, D. M., and Coauthors, 2015: The current status of the real-time in-situ Global Ocean Observing System for operational oceanography. J. Oper. Oceanogr., 8, s189s200, https://doi.org/10.1080/1755876X.2015.1049883.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 48 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Lueck, R. G., and J. J. Picklo, 1990: Thermal inertia of conductivity cells: Observations with a Sea-Bird cell. J. Atmos. Oceanic Technol., 7, 756768, https://doi.org/10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category-5 hurricanes. Wea. Forecasting, 23, 316, https://doi.org/10.1175/2007WAF2006111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, T., G. Seroka, J. Kohut, O. Schofield, and S. Glenn, 2015: Glider observations and modeling of sediment transport in Hurricane Sandy. J. Geophys. Res. Oceans, 120, 17711791, https://doi.org/10.1002/2014JC010474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K. S., L. Magnusson, and J. R. Bidlot, 2017: Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Oceans, 122, 43924412, https://doi.org/10.1002/2017JC012753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morison, J., R. Andersen, N. Larson, E. D’Asaro, and T. Boyd, 1994: The correction for thermal-lag effects in Sea-Bird CTD data. J. Atmos. Oceanic Technol., 11, 11511164, https://doi.org/10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., E. Levin, T. L. Delworth, R. Gudgel, and P. C. Hsu, 2018: Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science, 362, 794799, https://doi.org/10.1126/science.aat6711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Hurricane Center, 2017: Monthly tropical weather summary, December 2017. National Hurricane Center, accessed 7 January 2020, https://www.nhc.noaa.gov/archive/text/TWSAT/2017/TWSAT.201712011244.txt.

  • Oke, P. R., and Coauthors, 2009: Observing System Evaluations: Using GODAE Systems. Oceanography, 22, 144153, https://doi.org/10.5670/oceanog.2009.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Coauthors, 2015: Assessing the impact of observations on ocean forecasts and reanalyses: Part 1, Global studies. J. Oper. Oceanogr., 8, s49s62, https://doi.org/10.1080/1755876X.2015.1022067.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., A. B. Penny, and R. Berg, 2019: National Hurricane Center tropical cyclone report: Hurricane Maria (16–30 September 2017). NHC Tech. Rep. AL152017, 48 pp., https://www.nhc.noaa.gov/data/tcr/AL152017_Maria.pdf.

  • Polyakov, I. V., V. A. Alexeev, U. S. Bhatt, E. I. Polyakova, and X. Zhang, 2010: North Atlantic warming: Patterns of long-term trend and multidecadal variability. Climate Dyn., 34, 439457, https://doi.org/10.1007/s00382-008-0522-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., Y. Quilfen, B. Chapron, S. Fournier, V. Kudryavtsev, and R. Sabia, 2014a: Multisensor observations of the Amazon–Orinoco River plume interactions with hurricanes. J. Geophys. Res. Oceans, 119, 82718295, https://doi.org/10.1002/2014JC010107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., and Coauthors, 2014b: Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle. Surv. Geophys., 35, 681722, https://doi.org/10.1007/s10712-013-9244-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, and W. E. Johns, 2018: The influence of the barrier layer on SST response during tropical cyclone wind forcing using idealized experiments. J. Phys. Oceanogr., 48, 14711478, https://doi.org/10.1175/JPO-D-17-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, and B. Jaimes de la Cruz, 2019: The impact of the Amazon–Orinoco River plume on enthalpy flux and air–sea interaction within Caribbean Sea tropical cyclones. Mon. Wea. Rev., 147, 931950, https://doi.org/10.1175/MWR-D-18-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos-Burgoa, C., and Coauthors, 2018: Ascertainment of the estimated excess mortality from Hurricane Maria in Puerto Rico. Milken Institute School of Public Health, George Washington University, 69 pp., https://www.washingtonblade.com/content/files/2018/09/PuertoRicoReport.pdf.

  • Schott, T., and Coauthors, 2019: The Saffir–Simpson Hurricane wind scale. National Hurricane Center, NOAA, 4 pp., https://www.nhc.noaa.gov/pdf/sshws.pdf.

  • Seroka, G., T. Miles, Y. Xu, J. Kohut, O. Schofield, and S. Glenn, 2017: Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes. J. Geophys. Res. Oceans, 122, 48454867, https://doi.org/10.1002/2017JC012756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1982: Hurricane climatic fluctuations. Part II: Relation to large-scale circulation. Mon. Wea. Rev., 110, 10141023, https://doi.org/10.1175/1520-0493(1982)110<1014:HCFPIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and S. D. Jacob, 2006: Relationship between oceanic energy fluxes and surface winds during tropical cyclone passage. Atmosphere Ocean Interactions II: Advances in Fluid Mechanics, W. Perrie, Ed., WIT Press, 115–142.

    • Crossref
    • Export Citation
  • Shay, L. K., and E. W. Uhlhorn, 2008: Loop Current response to hurricanes Isidore and Lili. Mon. Wea. Rev., 136, 32483274, https://doi.org/10.1175/2007MWR2169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293308, https://doi.org/10.1002/qj.2922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., and D. J. Demaster, 1996: Phytoplankton biomass and productivity in the Amazon River plume: Correlation with seasonal river discharge. Cont. Shelf Res., 16, 291319, https://doi.org/10.1016/0278-4343(95)00007-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I. H. Kwon, 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, https://doi.org/10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vissa, N. K., A. N. V. Satyanarayana, and B. P. Kumar, 2013: Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Sci. J., 48, 279288, https://doi.org/10.1007/s12601-013-0026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S. K. Lee, R. Domingues, H. Zhang, and M. Goes, 2019: Interannual sea level variability along the southeastern seaboard of the United States in relation to the gyre-scale heat divergence in the North Atlantic. Geophys. Res. Lett., 46, 74817490, https://doi.org/10.1029/2019GL083596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Han, Y. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367385, https://doi.org/10.1016/j.dynatmoce.2011.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterizations on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada, 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos., 118, 11 55811 576, https://doi.org/10.1002/2013JD020405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 41 41 41
Full Text Views 10 10 10
PDF Downloads 16 16 16

Ocean Conditions and the Intensification of Three Major Atlantic Hurricanes in 2017

View More View Less
  • 1 University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida
  • 2 National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • 3 University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico
© Get Permissions
Restricted access

Abstract

Major Atlantic hurricanes Irma, Jose, and Maria of 2017 reached their peak intensity in September while traveling over the tropical North Atlantic Ocean and Caribbean Sea, where both atmospheric and ocean conditions were favorable for intensification. In situ and satellite ocean observations revealed that conditions in these areas exhibited (i) sea surface temperatures above 28°C, (ii) upper-ocean heat content above 60 kJ cm−2, and (iii) the presence of low-salinity barrier layers associated with a larger-than-usual extension of the Amazon and Orinoco riverine plumes. Proof-of-concept coupled ocean–hurricane numerical model experiments demonstrated that the accurate representation of such ocean conditions led to an improvement in the simulated intensity of Hurricane Maria for the 3 days preceding landfall in Puerto Rico, when compared to an experiment without the assimilation of ocean observations. Without the assimilation of ocean observations, upper-ocean thermal conditions were generally colder than observations, resulting in reduced air–sea enthalpy fluxes—enthalpy fluxes are more realistically simulated when the upper-ocean temperature and salinity structure is better represented in the model. Our results further showed that different components of the ocean observing system provide valuable information in support of improved TC simulations, and that assimilation of underwater glider observations alone enabled the largest improvement over the 24 h time frame before landfall. Our results, therefore, indicated that ocean conditions were relevant for more realistically simulating Hurricane Maria’s intensity. However, further research based on a comprehensive set of hurricane cases is required to confirm robust improvements to forecast systems.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0100.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ricardo Domingues, ricardo.domingues@noaa.gov

Abstract

Major Atlantic hurricanes Irma, Jose, and Maria of 2017 reached their peak intensity in September while traveling over the tropical North Atlantic Ocean and Caribbean Sea, where both atmospheric and ocean conditions were favorable for intensification. In situ and satellite ocean observations revealed that conditions in these areas exhibited (i) sea surface temperatures above 28°C, (ii) upper-ocean heat content above 60 kJ cm−2, and (iii) the presence of low-salinity barrier layers associated with a larger-than-usual extension of the Amazon and Orinoco riverine plumes. Proof-of-concept coupled ocean–hurricane numerical model experiments demonstrated that the accurate representation of such ocean conditions led to an improvement in the simulated intensity of Hurricane Maria for the 3 days preceding landfall in Puerto Rico, when compared to an experiment without the assimilation of ocean observations. Without the assimilation of ocean observations, upper-ocean thermal conditions were generally colder than observations, resulting in reduced air–sea enthalpy fluxes—enthalpy fluxes are more realistically simulated when the upper-ocean temperature and salinity structure is better represented in the model. Our results further showed that different components of the ocean observing system provide valuable information in support of improved TC simulations, and that assimilation of underwater glider observations alone enabled the largest improvement over the 24 h time frame before landfall. Our results, therefore, indicated that ocean conditions were relevant for more realistically simulating Hurricane Maria’s intensity. However, further research based on a comprehensive set of hurricane cases is required to confirm robust improvements to forecast systems.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0100.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ricardo Domingues, ricardo.domingues@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.07 MB)
Save