• Aksoy, A., S. Lorsolo, T. Vukicevic, K. J. Sellwood, S. D. Aberson, and F. Zhang, 2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140, 18431862, https://doi.org/10.1175/MWR-D-11-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, https://doi.org/10.1111/j.1600-0870.2006.00216.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2019: A nonlinear rank regression method for ensemble Kalman filter data assimilation. Mon. Wea. Rev., 147, 28472860, https://doi.org/10.1175/MWR-D-18-0448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, S. J., 2014: HF radar network design for remote sensing of the South China Sea. Advanced Geoscience Remote Sensing, M. Marghany, Ed., IntechOpen, Rijeka, https://doi.org/10.5772/57599.

    • Crossref
    • Export Citation
  • Aydoğdu, A., and et al. , 2018: OSSE for a sustainable marine observing network in the Sea of Marmara. Nonlinear Processes Geophys., 25, 537551, https://doi.org/10.5194/npg-25-537-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, https://doi.org/10.1175/2007MWR2032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brusdal, K., J. M. Brankart, G. Halberstadt, G. Evensen, P. Brasseur, P. J. van Leeuwen, E. Dombrowsky, and J. Verron, 2003: A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems. J. Mar. Syst., 40–41, 253289, https://doi.org/10.1016/S0924-7963(03)00021-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 19131922, https://doi.org/10.1175/WAF-D-20-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrier, M. J., H. Ngodock, S. Smith, G. Jacobs, P. Muscarella, T. Ozgokmen, B. Haus, and B. Lipphardt, 2014: Impact of assimilating ocean velocity observations inferred from Lagrangian drifter data using the NCOM-4DVAR. Mon. Wea. Rev., 142, 15091524, https://doi.org/10.1175/MWR-D-13-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrier, M. J., H. Ngodock, P. Muscarella, and S. Smith, 2016: Impact of assimilating surface velocity observations on the model sea surface height using the NCOM-4DVAR. Mon. Wea. Rev., 144, 10511068, https://doi.org/10.1175/MWR-D-14-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.-C., R.-S. Tseng, P. C. Chu, J.-M. Chen, and L. R. Centurioni, 2016: Observed strong currents under global tropical cyclones. J. Mar. Syst., 159, 3340, https://doi.org/10.1016/j.jmarsys.2016.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, Q., and J. Chao, 2012: Statistical features of tropical cyclones affecting China and its key economic zones. Acta Meteor. Sin., 26, 758772, https://doi.org/10.1007/s13351-012-0607-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Zhang, 2019: Development of a convection-permitting air-sea-coupled ensemble data assimilation system for tropical cyclone prediction. J. Adv. Model. Earth Syst., 11, 34743496, https://doi.org/10.1029/2019MS001795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135, 18281845, https://doi.org/10.1175/MWR3351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, E. F., and et al. , 2015: Ocean current estimation using a multi-model ensemble Kalman filter during the Grand Lagrangian Deployment Experiment (GLAD). Ocean Modell., 87, 86106, https://doi.org/10.1016/j.ocemod.2014.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delandmeter, P., and E. van Sebille, 2019: The Parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev., 12, 35713584, https://doi.org/10.5194/gmd-12-3571-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., and et al. , 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 446, https://doi.org/10.3389/fmars.2019.00446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., and M. Xue, 2013: Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling Hurricane Ike (2008). Quart. J. Roy. Meteor. Soc., 139, 467487, https://doi.org/10.1002/qj.1970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., and et al. , 2017: Impact of assimilating underwater glider data on Hurricane Gonzalo (2014) forecasts. Wea. Forecasting, 32, 11431159, https://doi.org/10.1175/WAF-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J., and et al. , 2012: Real-time tropical cyclone prediction using COAMPS-TC. Advances in Geosciences, Vol. 28, World Scientific, 15–28.

    • Crossref
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flaounas, E., and et al. , 2018: Assessment of an ensemble of ocean–atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Climate Dyn., 51, 10231040, https://doi.org/10.1007/s00382-016-3398-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., M. Abaza, F. Anctil, and R. Turcotte, 2014: Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeor., 15, 17081713, https://doi.org/10.1175/JHM-D-14-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frolov, S., C. H. Bishop, T. Holt, J. Cummings, and D. Kuhl, 2016: Facilitating strongly coupled ocean–atmosphere data assimilation with an interface solver. Mon. Wea. Rev., 144, 320, https://doi.org/10.1175/MWR-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujii, S., and et al. , 2013: An overview of developments and applications of oceanographic radar networks in Asia and Oceania countries. Ocean Sci. J., 48, 6997, https://doi.org/10.1007/s12601-013-0007-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, M., T. Hoar, M. Thomas, B. Bailey, and J. Castillo, 2016: Interfacing an ensemble data assimilation system with a 3D nonhydrostatic Coastal Ocean Model, an OSSE experiment. OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, IEEE, https://doi.org/10.1109/OCEANS.2016.7760992.

    • Crossref
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G., and et al. , 2017: Autonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts. Oceanography, 30, 92103, https://doi.org/10.5670/oceanog.2017.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, https://doi.org/10.1175/MWR-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, S. Y., and C. Snyder, 2014: Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon. Wea. Rev., 142, 14891508, https://doi.org/10.1175/MWR-D-13-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., and et al. , 2018: Drogue-loss detection for surface drifters during the Lagrangian Submesoscale Experiment (LASER). J. Atmos. Oceanic Technol., 35, 705725, https://doi.org/10.1175/JTECH-D-17-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and et al. , 2019: Development and evaluation of an ensemble-based data assimilation system for regional reanalysis over the Tibetan Plateau and surrounding regions. J. Adv. Model. Earth Syst., 11, 25032522, https://doi.org/10.1029/2019MS001665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heming, J. T., 2016: Met Office unified model tropical cyclone performance following major changes to the initialization scheme and a model upgrade. Wea. Forecasting, 31, 14331449, https://doi.org/10.1175/WAF-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, T. R., J. A. Cummings, C. H. Bishop, J. D. Doyle, X. Hong, S. Chen, and Y. Jin, 2011: Development and testing of a coupled ocean–atmosphere mesoscale ensemble prediction system. Ocean Dyn., 61, 19371954, https://doi.org/10.1007/s10236-011-0449-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson, B. Cornuelle, A. Köhl, and P. Heimbach, 2013: A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dyn. Atmos. Oceans, 63, 123, https://doi.org/10.1016/j.dynatmoce.2013.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., and et al. , 2018: A global coupled ensemble data assimilation system using the Community Earth System Model and the Data Assimilation Research Testbed. Quart. J. Roy. Meteor. Soc., 144, 24042430, https://doi.org/10.1002/qj.3308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., 2011: Assimilation of tropical cyclone advisory minimum sea level pressure in the NCEP global data assimilation system. Wea. Forecasting, 26, 10851091, https://doi.org/10.1175/WAF-D-11-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunii, M., K. Ito, A. Wada, M. Kunii, K. Ito, and A. Wada, 2017: Preliminary test of a data assimilation system with a regional high-resolution atmosphere–ocean coupled model based on an ensemble Kalman filter. Mon. Wea. Rev., 145, 565581, https://doi.org/10.1175/MWR-D-16-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., and P. Schneider, 2014: Data assimilation: Making sense of earth observation. Front. Environ. Sci., 2, 16, https://doi.org/10.3389/fenvs.2014.00016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2016a: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 6578, https://doi.org/10.1002/qj.2629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., J.-N. Thépaut, and D. Dee, 2016b: Impact of scatterometer surface wind data in the ECMWF coupled assimilation system. Mon. Wea. Rev., 144, 12031217, https://doi.org/10.1175/MWR-D-15-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and et al. , 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Perform. Comput. Appl., 19, 277292, https://doi.org/10.1177/1094342005056115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leeuwenburgh, O., 2005: Assimilation of along-track altimeter data in the tropical Pacific region of a global OGCM ensemble. Quart. J. Roy. Meteor. Soc., 131, 24552472, https://doi.org/10.1256/qj.04.146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., and et al. , 2019: Influence of air-sea coupling on Indian Ocean tropical cyclones. Climate Dyn., 52, 577598, https://doi.org/10.1007/s00382-018-4152-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M.-D., and et al. , 2018: Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Trop. Cyclone Res. Rev., 7, 85105, https://doi.org/10.6057/2018TCRR02.02.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. Liu, 2009: Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements. Geophys. Res. Lett., 36, L11813, https://doi.org/10.1029/2009GL038285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and et al. , 2018: Field survey of Typhoon Hato (2017) and a comparison with storm surge modeling in Macau. Nat. Hazards Earth Syst. Sci., 18, 31673178, https://doi.org/10.5194/nhess-18-3167-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. Toumi, 2017: A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea. Ocean Modell., 116, 159172, https://doi.org/10.1016/j.ocemod.2017.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. Toumi, 2018: Improved tropical cyclone intensity forecasts by assimilating coastal surface currents in an idealized study. Geophys. Res. Lett., 45, 10 01910 026, https://doi.org/10.1029/2018GL079677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and J. Li, 2010: An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear-sky full spatial resolution advanced IR Soundings. J. Appl. Meteor. Climatol., 49, 821827, https://doi.org/10.1175/2009JAMC2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. S. Schwartz, C. Snyder, and S. Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., 140, 40174034, https://doi.org/10.1175/MWR-D-12-00083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, L. M., and Z. M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190211, https://doi.org/10.1016/j.atmosres.2008.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., and et al. , 2019: ECMWF activities for improved hurricane forecasts. Bull. Amer. Meteor. Soc., 100, 445458, https://doi.org/10.1175/BAMS-D-18-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantovani, C., and et al. , 2020: Best practices on high frequency radar deployment and operation for ocean current measurement. Front. Mar. Sci., 7, 210, https://doi.org/10.3389/fmars.2020.00210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2011: Limited-area ensemble-based data assimilation. Mon. Wea. Rev., 139, 20252045, https://doi.org/10.1175/2011MWR3418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K. S., L. Magnusson, and J.-R. Bidlot, 2017: Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Oceans, 122, 43924412, https://doi.org/10.1002/2017JC012753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molcard, A., L. I. Piterbarg, A. Griffa, T. M. Özgökmen, and A. J. Mariano, 2003: Assimilation of drifter observations for the reconstruction of the Eulerian circulation field. J. Geophys. Res., 108, 3056, https://doi.org/10.1029/2001JC001240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molcard, A., A. Griffa, and T. M. Özgökmen, 2005: Lagrangian data assimilation in multilayer primitive equation ocean models. J. Atmos. Oceanic Technol., 22, 7083, https://doi.org/10.1175/JTECH-1686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muscarella, P., M. J. Carrier, H. Ngodock, S. Smith, B. L. Lipphardt, A. D. Kirwan, and H. S. Huntley, 2015: Do assimilated drifter velocities improve Lagrangian predictability in an operational ocean model? Mon. Wea. Rev., 143, 18221832, https://doi.org/10.1175/MWR-D-14-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Na, L., L. Tiejun, W. Hui, Z. Yunfei, G. Zhiyi, and W. Yi, 2015: Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. J. Ocean Univ. China, 14, 199209, https://doi.org/10.1007/s11802-015-2415-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2015: NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, accessed 11 October 2018, https://doi.org/10.5065/D65D8PWK.

    • Crossref
    • Export Citation
  • Neumann, B., A. T. Vafeidis, J. Zimmermann, and R. J. Nicholls, 2015: Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLOS One, 10, e0131375, https://doi.org/10.1371/journal.pone.0118571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, J. A. U., S. Dobricic, N. Pinardi, P.-M. Poulain, and D. Pettenuzzo, 2012: Variational assimilation of Lagrangian trajectories in the Mediterranean Ocean forecasting system. Ocean Sci., 8, 249259, https://doi.org/10.5194/os-8-249-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA Office of Ocean Exploration and Research, 2005: Physical Oceanography Division (PhOD)—Global Drifter Program. NOAA, accessed 10 September 2020, https://www.aoml.noaa.gov/phod/gdp.

  • Nodet, M., 2006: Variational assimilation of Lagrangian data in oceanography. Inverse Probl., 22, 245263, https://doi.org/10.1088/0266-5611/22/1/014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novelli, G., C. M. Guigand, C. Cousin, E. H. Ryan, N. J. Laxague, H. Dai, B. K. Haus, and T. M. Özgökmen, 2017: A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Oceanic Technol., 34, 25092532, https://doi.org/10.1175/JTECH-D-17-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., A. Molcard, T. M. Chin, L. I. Piterbarg, and A. Griffa, 2003: Assimilation of drifter observations in primitive equation models of midlatitude ocean circulation. J. Geophys. Res., 108, 3238, https://doi.org/10.1029/2002JC001719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, https://doi.org/10.1146/annurev-marine-121211-172315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169ES172, https://doi.org/10.1175/BAMS-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., D. W. Behringer, J. A. Carton, and E. Kalnay, 2015: A hybrid Global Ocean Data Assimilation System at NCEP. Mon. Wea. Rev., 143, 46604677, https://doi.org/10.1175/MWR-D-14-00376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., E. Bach, K. Bhargava, C. Chang, C. Da, L. Sun, and T. Yoshida, 2019: Strongly coupled data assimilation in multiscale media: Experiments using a quasi-geostrophic coupled model. J. Adv. Model. Earth Syst., 11, 18031829, https://doi.org/10.1029/2019MS001652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillipson, L., and R. Toumi, 2017: Impact of data assimilation on ocean current forecasts in the Angola Basin. Ocean Modell., 114, 4558, https://doi.org/10.1016/j.ocemod.2017.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., M. Toner, A. D. Kirwan Jr., and C. K. R. T. Jones, 2002: Drifter launch strategies based on Lagrangian templates. J. Phys. Oceanogr., 32, 18551869, https://doi.org/10.1175/1520-0485(2002)032<1855:DLSBOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, C. S. Velden, S. D. Aberson, and W. T. Liu, 2008: The impact of aircraft dropsonde and satellite wind data on numerical simulations of two landfalling tropical storms during the Tropical Cloud Systems and Processes experiment. Wea. Forecasting, 23, 6279, https://doi.org/10.1175/2007WAF2007006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, and J. Sun, 2009: Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity changes of Hurricane Dennis near a landfall. J. Atmos. Sci., 66, 33513365, https://doi.org/10.1175/2009JAS3121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., C. Yu, V. Tallapragada, J. Jin, and W. Mccarty, 2019: The impact of assimilation of GPM microwave imager clear-sky radiance on numerical simulations of Hurricanes Joaquin (2015) and Matthew (2016) with the HWRF Model. Mon. Wea. Rev., 147, 175198, https://doi.org/10.1175/MWR-D-17-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., and et al. , 2019: Rapid intensification of Typhoon Hato (2017) over shallow water. Sustainability, 11, 3709, https://doi.org/10.3390/su11133709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raeder, K., J. L. Anderson, N. Collins, T. J. Hoar, J. E. Kay, P. H. Lauritzen, and R. Pincus, 2012: DART/CAM: An ensemble data assimilation system for CESM atmospheric models. J. Climate, 25, 63046317, https://doi.org/10.1175/JCLI-D-11-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roarty, H., and et al. , 2019: The global high frequency radar network. Front. Mar. Sci., 6, 164, https://doi.org/10.3389/fmars.2019.00164.

  • Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, https://doi.org/10.1175/MWR-D-12-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, https://doi.org/10.1175/JCLI3812.1.

  • Salman, H., L. Kuznetsov, C. K. R. T. Jones, and K. Ide, 2006: A method for assimilating Lagrangian data into a shallow-water-equation ocean model. Mon. Wea. Rev., 134, 10811101, https://doi.org/10.1175/MWR3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., E. M. Fukada, J. A. Knaff, B. R. Strahl, M. J. Brennan, and T. Marchok, 2017: Tropical cyclone gale wind radii estimates for the western North Pacific. Wea. Forecasting, 32, 10291040, https://doi.org/10.1175/WAF-D-16-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandery, P. A., G. B. Brassington, A. Craig, and T. Pugh, 2010: Impacts of ocean–atmosphere coupling on tropical cyclone intensity change and ocean prediction in the Australian region. Mon. Wea. Rev., 138, 20742091, https://doi.org/10.1175/2010MWR3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., P. G. Black, J. R. Haustein, J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987: Ocean response to a Hurricane. Part I: Observations. J. Phys. Oceanogr., 17, 20652083, https://doi.org/10.1175/1520-0485(1987)017<2065:ORTAHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y.-T., and et al. , 2019: Applications of ocean currents data from high-frequency radars and current profilers to search and rescue missions around Taiwan. J. Oper. Oceanogr., 12, S126S136, https://doi.org/10.1080/1755876X.2018.1541538.

    • Search Google Scholar
    • Export Citation
  • Singh, T., 2020: Development of an ensemble data assimilation system with LMDZ5 AGCM for regional reanalysis. Climate Dyn., 54, 28472868, https://doi.org/10.1007/s00382-020-05147-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH..

    • Crossref
    • Export Citation
  • Sluka, T. C., S. G. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752759, https://doi.org/10.1002/2015GL067238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. J., A. M. Fowler, and A. S. Lawless, 2015: Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model. Tellus, 67A, 27025, https://doi.org/10.3402/tellusa.v67.27025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. J., A. S. Lawless, and N. K. Nichols, 2018: Treating sample covariances for use in strongly coupled atmosphere-ocean data assimilation. Geophys. Res. Lett., 45, 445454, https://doi.org/10.1002/2017GL075534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivas, C. V., G. M. Mohan, C. V. Naidu, R. Baskaran, and B. Venkatraman, 2016: Impact of air-sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3-D ocean model coupled to ARW. J. Geophys. Res. Atmos., 121, 94009421, https://doi.org/10.1002/2015JD024431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., and S. G. Penny, 2019: Lagrangian data assimilation of surface drifters in a double-gyre ocean model using the local ensemble transform Kalman filter. Mon. Wea. Rev., 147, 45334551, https://doi.org/10.1175/MWR-D-18-0406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 13111328, https://doi.org/10.1002/qj.49711347812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., J. P. Kossin, S. J. Camargo, and C. Li, 2019: Past and future hurricane intensity change along the U.S. East coast. Sci. Rep., 9, 7795, https://doi.org/10.1038/s41598-019-44252-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Performance characteristics of a pseudo-operational ensemble Kalman filter. Mon. Wea. Rev., 136, 39473963, https://doi.org/10.1175/2008MWR2443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2009: Ensemble data assimilation applied to RAINEX observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 28172829, https://doi.org/10.1175/2009MWR2656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, L., J. Zhu, L. Bertino, and H. Wang, 2008: Initial ensemble generation and validation for ocean data assimilation using HYCOM in the Pacific. Ocean Dyn., 58, 8199, https://doi.org/10.1007/s10236-008-0133-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and R. Toumi, 2018: A historical analysis of the mature stage of tropical cyclones. Int. J. Climatol., 38, 24902505, https://doi.org/10.1002/joc.5374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, https://doi.org/10.1175/2011MWR3602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: On the reliability of the rank histogram. Mon. Wea. Rev., 139, 311316, https://doi.org/10.1175/2010MWR3446.1.

  • World Bank, 2015: East Asia’s Changing Urban Landscape: Measuring a Decade of Spatial Growth. The World Bank, 180 pp., https://doi.org/10.1596/978-1-4648-0363-5.

    • Crossref
    • Export Citation
  • Yang, C., Z. Liu, J. Bresch, S. R. H. Rizvi, X.-Y. Huang, and J. Min, 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus, 68A, 30917, https://doi.org/10.3402/tellusa.v68.30917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yihong, D., W. Rongsheng, Y. Runling, and L. Xudong, 2013: Numerical simulation of changes in tropical cyclone intensity using a coupled air-sea model. Acta Meteor. Sin., 27, 658672, https://doi.org/10.1007/s13351-013-0503-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, T., and E. Kalnay, 2018: Correlation-cutoff method for covariance localization in strongly coupled data assimilation. Mon. Wea. Rev., 146, 28812889, https://doi.org/10.1175/MWR-D-17-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zambon, J. B., R. He, and J. C. Warner, 2014: Investigation of Hurricane Ivan using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model. Ocean Dyn., 64, 15351554, https://doi.org/10.1007/s10236-014-0777-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, https://doi.org/10.1175/BAMS-D-13-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and K. Emanuel, 2018: Promises in air–sea fully coupled data assimilation for future hurricane prediction. Geophys. Res. Lett., 45, 13 17313 177, https://doi.org/10.1029/2018GL080970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, https://doi.org/10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, H. Zhang, and Z. Pu, 2014: Influence of assimilating surface observations on numerical prediction of landfalls of Hurricane Katrina (2005) with an ensemble Kalman filter. Mon. Wea. Rev., 142, 29152934, https://doi.org/10.1175/MWR-D-14-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., and et al. , 2020: Coupled data assimilation and parameter estimation in coupled ocean-atmosphere models: A review. Climate Dyn., 54, 51275144, https://doi.org/10.1007/s00382-020-05275-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., Y. Chen, and V. S. Sheng, 2020: A real-time typhoon eye detection method based on deep learning for meteorological information forensics. J. Real-Time Image Process., 17, 95102, https://doi.org/10.1007/s11554-019-00899-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 82 82 82
Full Text Views 25 25 25
PDF Downloads 36 36 36

Strongly Coupled Assimilation of a Hypothetical Ocean Current Observing Network within a Regional Ocean–Atmosphere Coupled Model: An OSSE Case Study of Typhoon Hato

View More View Less
  • 1 Space and Atmospheric Physics, Department of Physics, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
  • | 2 Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
  • | 3 College of Oceanography, Hohai University, Nanjing, China
  • | 4 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
© Get Permissions
Restricted access

Abstract

The forecast of tropical cyclone (TC) intensity is a significant challenge. In this study, we showcase the impact of strongly coupled data assimilation with hypothetical ocean currents on analyses and forecasts of Typhoon Hato (2017). Several observation simulation system experiments (OSSE) were undertaken with a regional coupled ocean–atmosphere model. We assimilated combinations of (or individually) a hypothetical coastal current HF radar network, a dense array of drifter floats, and minimum sea level pressure. During the assimilation, instant updates of many important atmospheric variables (winds and pressure) are achieved from the assimilation of ocean current observations using the cross-domain error covariance, significantly improving the track and intensity analysis of Typhoon Hato. Relative to a control experiment (with no assimilation), the error of minimum pressure decreased by up to 13 hPa (4 hPa/57% on average). The maximum wind speed error decreased by up to 18 kt (5 kt/41% on average) (1 kt ≈ 0.5 m s−1). By contrast, weakly coupled implementations cannot match these reductions (10% on average). Although traditional atmospheric observations were not assimilated, such improvements indicate that there is considerable potential in assimilating ocean currents from coastal HF radar and surface drifters within a strongly coupled framework for intense landfalling TCs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi Li, yli.ouc@gmail.com

Abstract

The forecast of tropical cyclone (TC) intensity is a significant challenge. In this study, we showcase the impact of strongly coupled data assimilation with hypothetical ocean currents on analyses and forecasts of Typhoon Hato (2017). Several observation simulation system experiments (OSSE) were undertaken with a regional coupled ocean–atmosphere model. We assimilated combinations of (or individually) a hypothetical coastal current HF radar network, a dense array of drifter floats, and minimum sea level pressure. During the assimilation, instant updates of many important atmospheric variables (winds and pressure) are achieved from the assimilation of ocean current observations using the cross-domain error covariance, significantly improving the track and intensity analysis of Typhoon Hato. Relative to a control experiment (with no assimilation), the error of minimum pressure decreased by up to 13 hPa (4 hPa/57% on average). The maximum wind speed error decreased by up to 18 kt (5 kt/41% on average) (1 kt ≈ 0.5 m s−1). By contrast, weakly coupled implementations cannot match these reductions (10% on average). Although traditional atmospheric observations were not assimilated, such improvements indicate that there is considerable potential in assimilating ocean currents from coastal HF radar and surface drifters within a strongly coupled framework for intense landfalling TCs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi Li, yli.ouc@gmail.com
Save