• Alaka, M. A., 1961: The occurrence of anomalous winds and their significance. Mon. Wea. Rev., 89, 482494, https://doi.org/10.1175/1520-0493(1961)089<0482:TOOAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., E. R. Sanabia, S. C. Reynolds, J. K. Stapleton, and A. L. Borrego, 2016: Evolution of upper tropospheric outflow in Hurricanes Iselle and Julio (2014) in the Navy Global Environmental Model (NAVGEM) analyses and in satellite and dropsonde observations. J. Geophys. Res. Atmos., 121, 13 27313 286, https://doi.org/10.1002/2016JD025656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1985: A numerical study of the effect of a mountain range on a landfalling tropical cyclone. Mon. Wea. Rev., 113, 567583, https://doi.org/10.1175/1520-0493(1985)113<0567:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, M. T., M. Li, and X. Shen, 2015: Interactions between Typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 26822702, https://doi.org/10.1175/JAS-D-14-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brand, S., 1970: Interaction of binary tropical cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, https://doi.org/10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, 52395245, https://doi.org/10.1175/2008MWR2593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campetella, C. M., and N. E. Possia, 2007: Upper-level cut-off lows in southern South America. Meteor. Atmos. Phys., 96, 181191, https://doi.org/10.1007/s00703-006-0227-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265290, https://doi.org/10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 13171336, https://doi.org/10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. W. J., 1983: A numerical study of the interaction between two tropical cyclones. Mon. Wea. Rev., 111, 18061817, https://doi.org/10.1175/1520-0493(1983)111<1806:ANSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and L. F. Chou, 1994: An investigation of cold vortices in the upper troposphere over the western North Pacific during the warm season. Mon. Wea. Rev., 122, 14361448, https://doi.org/10.1175/1520-0493(1994)122<1436:AIOCVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. C., and Coauthors, 2001: Summer upper-level vortex over the North Pacific. Bull. Amer. Meteor. Soc., 82, 19912006, https://doi.org/10.1175/1520-0477-82.9.1991.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Wang, and K. Zhao, 2015: Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Wea. Rev., 143, 6487, https://doi.org/10.1175/MWR-D-13-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, D., and S. Das, 2017: The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model. J. Earth Syst, 126, 57, https://doi.org/10.1007/s12040-017-0830-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., C. M. Nguyen, and M. J. Reeder, 2008: Downstream development during the rapid intensification of Hurricanes Opal and Katrina: The distant trough interaction problem. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 9B.4, https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138060.htm.

  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 13971411, https://doi.org/10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and F. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 37393747, https://doi.org/10.1175/JAS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., and Coauthors, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model. 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather, Seattle, WA, Amer. Meteor. Soc., 280–283.

  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 12951313, https://doi.org/10.1175/MWR-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2019: A climatological analysis of tropical cyclone rapid intensification in environments of upper-tropospheric troughs. Mon. Wea. Rev., 147, 36933719, https://doi.org/10.1175/MWR-D-19-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., K. L. Corbosiero, and H. Kuo, 2009: Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 17641778, https://doi.org/10.1175/2008JAS2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The mutual tendency toward symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, https://doi.org/10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49, 75104, https://doi.org/10.1002/qj.49704920602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, X. Y., Z. Yan, M. Peng, M. Bi, and T. Li, 2018: Sensitivity of tropical cyclone track to the vertical structure of a nearby monsoon gyre. J. Atmos. Sci., 75, 20172028, https://doi.org/10.1175/JAS-D-17-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, J. E., and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 12521264, https://doi.org/10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D. E., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and J. C. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM-93. Mon. Wea. Rev., 124, 26252643, https://doi.org/10.1175/1520-0493(1996)124<2625:TOALMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, X. Ge, and T. Li, 2011: Performance of a dynamic initialization scheme in the Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26, 650663, https://doi.org/10.1175/WAF-D-10-05051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, https://doi.org/10.1002/qj.49711046510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. Mclntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential-vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, L. H., S. H. Su, and G. Robert, 2018: On typhoon track deflections near the east coast of Taiwan. Mon. Wea. Rev., 146, 14951510, https://doi.org/10.1175/MWR-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models Meteor. Monogr. No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kelly, W. E., and D. Mock, 1982: A diagnostic study of upper tropospheric cold lows over the western North Pacific. Mon. Wea. Rev., 110, 471480, https://doi.org/10.1175/1520-0493(1982)110<0471:ADSOUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and J. D. Doyle, 2018: On the dynamics of tropical cyclone and trough interactions. J. Atmos. Sci., 75, 26872709, https://doi.org/10.1175/JAS-D-17-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654, https://doi.org/10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices: Observations. Quart. J. Roy. Meteor. Soc., 119, 13471361, https://doi.org/10.1002/qj.49711951406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., Y. Ge, Z. Tan, and X. Bao, 2020: An evaluation and improvement of tropical cyclone prediction in the western North Pacific basin from global ensemble forecasts. Sci. China Earth Sci., 63, 1226, https://doi.org/10.1007/s11430-019-9480-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M. D., M. Plu, D. Barbary, F. Roux, and P. Arbogast, 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70, 25472565, https://doi.org/10.1175/JAS-D-12-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M. D., M. Plu, and F. Roux, 2016: On the sensitivity of tropical cyclone intensification under upper-level trough forcing. Mon. Wea. Rev., 144, 11791202, https://doi.org/10.1175/MWR-D-15-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., L. Guo, Y. Ying, and S. Hu, 2012: Impacts of upper-level cold vortex on the rapid change of intensity and motion of Typhoon Meranti (2010). J. Trop. Meteor., 18, 207219.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Rarley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534562, https://doi.org/10.1175/1520-0469(1999)056<0534:OIOADC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y. A., J.-C. Liu, M.-X. Wu, Y.-J. Lee, C.-H. Cheng, C.-P. Kuei, and R.-M. Hong, 2016: Generalized empirical formulas of threshold distance to characterize cyclone-cyclone interactions. IEEE Trans. Geosci. Remote Sens., 54, 35023512, https://doi.org/10.1109/TGRS.2016.2519538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maw, K. W., and J. Min, 2017: Impacts of microphysics schemes and topography on the prediction of the heavy rainfall in western Myanmar associated with tropical cyclone ROANU (2016). Adv. Meteor., 2017, 3252503, https://doi.org/10.1155/2017/3252503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy momentum fluxes. J. Atmos. Sci., 46, 10931105, https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2014: Symmetric instability in the outflow layer of a major hurricane. J. Atmos. Sci., 71, 37393746, https://doi.org/10.1175/JAS-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606, https://doi.org/10.1175/1520-0469(1995)052<3593:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2015: Simulation of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 72, 45294551, https://doi.org/10.1175/JAS-D-15-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patla, J. E., D. Stevens, and G. M. Barnes, 2009: A conceptual model for the influence of TUTT cells on tropical cyclone motion in the northwest Pacific Ocean. Wea. Forecasting, 24, 12151235, https://doi.org/10.1175/2009WAF2222181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirano, C. M., K. L. Corbosiero, and B. H. Tang, 2016: Revisiting trough interactions and tropical cyclone intensity change. Geophys. Res. Lett., 43, 55095515, https://doi.org/10.1002/2016GL069040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and C. A. Reynolds, 2005: Double trouble for typhoon forecasters. Geophys. Res. Lett., 32, L02810, https://doi.org/10.1029/2004GL021680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclones forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 25082528, https://doi.org/10.1175/JAS3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, https://doi.org/10.1175/2008WAF2222128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., M. C. Morgan, and G. J. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177194, https://doi.org/10.1175/2009JAS2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.10.5194/ACP-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1993: On the interaction of tropical cyclone-scale vortices. II: Discrete vortex patches. Quart. J. Roy. Meteor. Soc., 119, 13631379, https://doi.org/10.1002/QJ.49711951407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., S. W. Chang, J. Stout, J. Steranka, and J.-J. Shi, 1991: Satellite observations of variations in tropical cyclone convection caused by upper-tropospheric troughs. J. Appl. Meteor., 30, 11631184, https://doi.org/10.1175/1520-0450(1991)030<1163:SOOVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1975: The monsoon circulation and cloudiness over the GATE area. Mon. Wea. Rev., 103, 369387, https://doi.org/10.1175/1520-0493(1975)103<0369:TMCACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1996: The motion of Hurricane Gloria: A potential vorticity diagnosis. Mon. Wea. Rev., 124, 24972508, https://doi.org/10.1175/1520-0493(1996)124<2497:TMOHGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1999: Potential vorticity asymmetries and tropical cyclone motion. Mon. Wea. Rev., 127, 124131, https://doi.org/10.1175/1520-0493(1999)127<0124:PVAATC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., S. W. Chang, and S. Raman, 1997: Interaction between Hurricane Florence (1988) and an upper-tropospheric westerly trough. J. Atmos. Sci., 54, 12311247, https://doi.org/10.1175/1520-0469(1997)054<1231:IBHFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, https://doi.org/10.1175/BAMS-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M. F., and Coauthors, 2004:Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf on Weather Analysis and Forecasting/16th Conf on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Velden, C. S., and L. M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244253, https://doi.org/10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1995: On the interaction of tropical cyclone-scale vortices. IV: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 121, 95126, https://doi.org/10.1002/qj.49712152106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, https://doi.org/10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, N., Y. Li, D.-L. Zhang, Z. Mai, and S.-Q. Yang, 2016: A statistical analysis of the relationship between upper-tropospheric cold low and tropical cyclone track and intensity change over the western North Pacific. Mon. Wea. Rev., 144, 18051822, https://doi.org/10.1175/MWR-D-15-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, D., and Coauthors, 2019: An ensemble analysis on abrupt north turning of Typhoon Meranti (1010) under the influence of an upper tropospheric cold low (in Chinese). Chin. J. Atmos. Sci., 43, 730740.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 15331549, https://doi.org/10.1175/1520-0493(2001)129<1533:NSOTGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., and K. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 6992, https://doi.org/10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., and K. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93109, https://doi.org/10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane–environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 22642282, https://doi.org/10.1175/1520-0469(1996)053<2264:ANSOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., T. S. Huang, W. P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Super Typhoon Saomai (2000). Mon. Wea. Rev., 131, 12891300, https://doi.org/10.1175/1520-0493(2003)131<1289:ANLATB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., K. W. Kevin, and Y.-Y. Lo, 2009: Numerical study of the rainfall event due to the interaction of Typhoon Babs (1998) and the northeasterly monsoon. Mon. Wea. Rev., 137, 20492064, https://doi.org/10.1175/2009MWR2757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., K. K. W. Cheung, J.-H. Chen, and C.-C . Chang, 2010: The impact of Tropical Storm Paul (1999) on the motion and rainfall associated with Tropical Storm Rachel (1999) near Taiwan. Mon. Wea. Rev., 138, 16351650, https://doi.org/10.1175/2009MWR3021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L. G., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911, https://doi.org/10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Z. Y., X. Ge, M. Peng, and T . Lim, 2019: Does monsoon gyre always favour tropical cyclone rapid intensification? Quart. J. Roy. Meteor. Soc., 145, 26852697, https://doi.org/10.1002/qj.3586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C. C., C.-C. Wu, K.-H. Chou, and C.-Y . Lee, 2008: Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev., 136, 45934611, https://doi.org/10.1175/2008MWR2496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 31933212, https://doi.org/10.1175/1520-0493(1993)121<3193:IOTWTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., and R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan orography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 32133233, https://doi.org/10.1175/1520-0493(1993)121<3213:IOTWTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z. F., Y. Wang, H. Xu, N. Davidson, Y. Chen, Y. Chen, and H. Yu, 2017: On the relationship between intensity and rainfall distribution in tropical cyclones making landfall over China. J. Appl. Meteor. Climatol., 56, 28832901, https://doi.org/10.1175/JAMC-D-16-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 271 271 13
Full Text Views 179 179 7
PDF Downloads 233 233 9

Understanding the Impacts of Upper-Tropospheric Cold Low on Typhoon Jongdari (2018) Using Piecewise Potential Vorticity Inversion

View More View Less
  • 1 Key laboratory of Meteorological Disaster of Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 3 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 4 University of Colorado, Colorado Springs, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Typhoon Jongdari (2018) had an unusual looping path before making landfall in Japan, which posed a forecasting challenge for operational numerical models. The impacts of an upper-tropospheric cold low (UTCL) on the track and intensity of Jongdari are investigated using numerical simulations. The storm track and intensity are well simulated in the control experiment using the GFS analysis as the initial and boundary conditions. In the sensitivity experiment (RCL), the UTCL is removed from the initial-condition fields using the piecewise potential vorticity inversion (PPVI), and both the track and intensity of Jongdari change substantially. The diagnosis of potential vorticity tendency suggests that horizontal advection is the primary contributor for storm motion. Flow decomposition using the PPVI further demonstrates that the steering flow is strongly affected by the UTCL, and the looping path of Jongdari results from the Fujiwhara interaction between the typhoon and UTCL. Jongdari first intensifies and then weakens in the control experiment, consistent with the observation. In contrast, it undergoes a gradual intensification in the RCL experiment. The UTCL contributes to the intensification of Jongdari at the early stage by enhancing the eddy flux convergence of angular momentum and reducing inertial stability, and it contributes to the storm weakening via enhanced vertical wind shear at the later stage when moving closer to Jongdari. Different sea surface temperatures and other environmental conditions along the different storm tracks also contribute to the intensity differences between the control and the RCL experiments, indicating the indirect impacts of the UTCL on the typhoon intensity.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuyang Ge, xuyang@nuist.edu.cn

Abstract

Typhoon Jongdari (2018) had an unusual looping path before making landfall in Japan, which posed a forecasting challenge for operational numerical models. The impacts of an upper-tropospheric cold low (UTCL) on the track and intensity of Jongdari are investigated using numerical simulations. The storm track and intensity are well simulated in the control experiment using the GFS analysis as the initial and boundary conditions. In the sensitivity experiment (RCL), the UTCL is removed from the initial-condition fields using the piecewise potential vorticity inversion (PPVI), and both the track and intensity of Jongdari change substantially. The diagnosis of potential vorticity tendency suggests that horizontal advection is the primary contributor for storm motion. Flow decomposition using the PPVI further demonstrates that the steering flow is strongly affected by the UTCL, and the looping path of Jongdari results from the Fujiwhara interaction between the typhoon and UTCL. Jongdari first intensifies and then weakens in the control experiment, consistent with the observation. In contrast, it undergoes a gradual intensification in the RCL experiment. The UTCL contributes to the intensification of Jongdari at the early stage by enhancing the eddy flux convergence of angular momentum and reducing inertial stability, and it contributes to the storm weakening via enhanced vertical wind shear at the later stage when moving closer to Jongdari. Different sea surface temperatures and other environmental conditions along the different storm tracks also contribute to the intensity differences between the control and the RCL experiments, indicating the indirect impacts of the UTCL on the typhoon intensity.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuyang Ge, xuyang@nuist.edu.cn
Save