• Allen, J., M. R. Kumjian, C. Nixon, R. Jewell, B. Smith, and R. Thompson, 2020: Forecast parameters for U.S. hail occurrence and size. 30th Conf. on Weather Analysis and Forecasting/26th Conf. on Numerical Weather Prediction, Boston, MA, Amer. Meteor. Soc., 1A.4, https://ams.confex.com/ams/2020Annual/webprogram/Paper368490.html.

  • Altinger de Schwarzkopf, M., and L. Rosso, 1982: Severe storms and tornadoes in Argentina. 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 192–196.

  • Arias, I., and V. Chandrasekar, 2019: CSU C-Band Radar Data, version 1.0. Accessed 15 June 2020, https://doi.org/10.26023/DA1G-MCNC-YB0F.

    • Crossref
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruick, Z. S., K. L. Rasmussen, and D. J. Cecil, 2019: Subtropical South American hailstorm characteristics and environments. Mon. Wea. Rev., 147, 42894304, https://doi.org/10.1175/MWR-D-19-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, B. J., B. B. Demoz, and R. Delgado, 2019: An overview of low-level jet winds and corresponding mixed layer depths during PECAN. J. Geophys. Res. Atmos., 124, 91419160, https://doi.org/10.1029/2019JD030658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Center for Severe Weather Research, 2019: CSWR RELAMPAGO dataset, version 1.0. Accessed 15 June 2020, https://data.eol.ucar.edu/dataset/553.055.

  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, https://doi.org/10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., H. E. Brooks, and J. A. Hart, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • de Elía, R., L. Vidal, P. Lohigorry, R. Mezher, and M. Rugna, 2017: El SMN y la red argentina de radares meteorológicos. SMN Nota Técnica SMN 2017-39, 21 pp., http://repositorio.smn.gob.ar/bitstream/handle/20.500.12160/625/Nota_Tecnica_SMN_2017-39.pdf?sequence=1&isAllowed=y.

  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. M. Schultz, 2006: On the use of indices and parameters in forecasting severe storms. Electron. J. Severe Storms Meteor., 1(3), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/11/12.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains elevated convection at night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and W. S. Ashley, 2011: Climatology of potentially severe convective environments from the North American Regional Reanalysis. Electron. J. Severe Storms Meteor., 6 (8), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.

    • Search Google Scholar
    • Export Citation
  • Hardin, J., A. Hunzinger, E. Schuman, A. Matthews, N. Bharadwaj, A. Varble, K. Johnson, and S. Giangrande, 2018: C-Band Scanning ARM Precipitation Radar (CSAPR2CFRPPIQC). Atmospheric Radiation Measurement (ARM) user facility, accessed 13 June 2020, https://doi.org/10.5439/1615604.

    • Crossref
    • Export Citation
  • Helmus, J., and S. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., R. S. Schumacher, G. R. Herman, M. C. Coniglio, M. D. Parker, and C. L. Ziegler, 2019: Evolution of pre- and postconvective environmental profiles from mesoscale convective systems during PECAN. Mon. Wea. Rev., 147, 23292354, https://doi.org/10.1175/MWR-D-18-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdridge, D., J. Kyrouac, and E. Keeler, 2018: Balloon-borne sounding system (SONDEWNPN). Atmospheric Radiation Measurement (ARM) user facility, accessed 27 May 2020, https://doi.org/10.5439/1021460.

    • Crossref
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the tropical rainfall measuring mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and et al. , 2020: Gargantuan hail in Argentina. Bull. Amer. Meteor. Soc., 101, E1241E1258, https://doi.org/10.1175/BAMS-D-19-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595, https://doi.org/10.1002/2015GL063776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., R. J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. Geophys. Res. Lett., 46, 12 52012 526, https://doi.org/10.1029/2019GL084099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

    • Crossref
    • Export Citation
  • Matsudo, C., and P. Salio, 2011: Severe weather reports and proximity to deep convection over Northern Argentina. Atmos. Res., 100, 523537, https://doi.org/10.1016/j.atmosres.2010.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mezher, R. N., M. Doyle, and V. Barros, 2012: Climatology of hail in Argentina. Atmos. Res., 114–115, 7082, https://doi.org/10.1016/j.atmosres.2012.05.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montini, T. L., C. Jones, and L. M. V. Carvalho, 2019: The South American low-level jet: A new climatology, variability, and changes. J. Geophys. Res. Atmos., 124, 12001218, https://doi.org/10.1029/2018JD029634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, K. L. Rasmussen, and P. V. Salio, 2018: Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Mon. Wea. Rev., 146, 25412557, https://doi.org/10.1175/MWR-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., J. Marquis, A. Varble, and K. Friedrich, 2020: Radiosonde observations of environments supporting deep moist convection initiation during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 289309, https://doi.org/10.1175/MWR-D-20-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and et al. , 2021: A storm safari in Argentina: Proyecto RELAMPAGO, Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-20-0029.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., J. M. Peters, and J. P. Mulholland, 2020: Evaluating the effective inflow layer of simulated supercell updrafts. Mon. Wea. Rev., 148, 35073532, https://doi.org/10.1175/MWR-D-20-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, M. I., E. L. Nascimento, and C. Kannenberg, 2018: A new look at the identification of low-level jets in South America. Mon. Wea. Rev., 146, 23152334, https://doi.org/10.1175/MWR-D-17-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piersante, J. O, K. L. Rasmussen, R. S. Schumacher, A. K. Rowe, and L. A. McMurdie, 2021: A synoptic evolution comparison of the smallest and largest MCSs in subtropical South America between spring and summer. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-30-0208.1, in press.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. M. Chaplin, M. D. Zuluaga, and R. A. Houze, 2015: Contribution of extreme convective storms to rainfall in South America. J. Hydrometeor., 17, 353367, https://doi.org/10.1175/JHM-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribeiro, B., and L. F. Bosart, 2017: Elevated mixed layers and associated severe thunderstorm environments in South and North America. Mon. Wea. Rev., 146, 328, https://doi.org/10.1175/MWR-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribeiro, B., and L. Machado, 2019: Brazil Sao Borja Radiosonde Data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 27 May 2020, https://doi.org/10.26023/416N-161D-BC09.

    • Crossref
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, C., A. K. Rowe, L. McMurdie, and K. L. Rasmussen, 2021: Analysis of the South American low-level jet during the RELAMPAGO campaign. Mesoscale Processes Across Scales Symp., 331, Amer. Meteor. Soc., https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379293.

  • Schumacher, R., 2019: CSU mobile radiosonde data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 27 May 2020, https://doi.org/10.26023/3QGG-JQKS-AF0G.

    • Crossref
    • Export Citation
  • Servicio Meteorologico Nacional—Argentina, 2019: SMN radiosonde data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 27 May 2020, https://doi.org/10.26023/E8MP-0GD3-4903.

    • Crossref
    • Export Citation
  • Silva Dias, M. A. F., 2011: An increase in the number of tornado reports in Brazil. Wea. Climate Soc., 3, 209217, https://doi.org/10.1175/2011WCAS1095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. N., J. G. Gebauer, P. M. Klein, E. Fedorovich, and J. A. Gibbs, 2019: The Great Plains low-level jet during PECAN: Observed and simulated characteristics. Mon. Wea. Rev., 147, 18451869, https://doi.org/10.1175/MWR-D-18-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, J. S., M. R. Kumjian, N. McCarthy, P. Maldonado, and M. Wang, 2020: Quantifying hail size distributions from the sky—Application of drone aerial photogrammetry. Atmos. Meas. Tech., 13, 747754, https://doi.org/10.5194/amt-13-747-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteor., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm Prediction Center, 2020: Significant hail parameter. Accessed 28 July 2020, https://www.spc.noaa.gov/exper/mesoanalysis/help/help_sigh.html.

  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, and C. M. Mead, 2004: An update to the supercell composite and significant tornado parameters. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P8.1, https://ams.confex.com/ams/11aram22sls/techprogram/paper_82100.htm.

  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. J. Stensrud, M. C. Coniglio, R. S. Schumacher, M. E. Baldwin, S. Waugh, and D. T. Conlee, 2016: Mobile radiosonde deployments during the Mesoscale Predictability Experiment (MPEX): Rapid and adaptive sampling of upscale convective feedbacks. Bull. Amer. Meteor. Soc., 97, 329336, https://doi.org/10.1175/BAMS-D-14-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and et al. , 2020: Multiple-platform and multiple-Doppler radar observations of a supercell thunderstorm in South America during RELAMPAGO. Mon. Wea. Rev., 148, 32253241, https://doi.org/10.1175/MWR-D-20-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR–Earth Observing Laboratory, 2020a: Multi-network composite 5 mb vertical resolution sounding composite, version 1.3. Accessed 27 May 2020, https://doi.org/10.26023/EXZJ-XBEV-KV05.

    • Crossref
    • Export Citation
  • UCAR/NCAR–Earth Observing Laboratory, 2020b: Multi-network composite highest resolution radiosonde data, version 1.3. Accessed 27 May 2020, https://doi.org/10.26023/GKFF-YNBJ-BV14.

    • Crossref
    • Export Citation
  • Varble, A. C., and et al. , 2021: Utilizing a storm-generating hotspot to study convective cloud transitions: The CACTI experiment. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-20-0030.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and et al. , 2006: The South American low-level jet experiment. Bull. Amer. Meteor. Soc., 87, 6378, https://doi.org/10.1175/BAMS-87-1-63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wade, A. R., M. C. Coniglio, and C. L. Ziegler, 2018: Comparison of near- and far-field supercell inflow environments using radiosonde observations. Mon. Wea. Rev., 146, 24032415, https://doi.org/10.1175/MWR-D-17-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2021: FARM-data-RELAMPAGO (version 1) [Data set]. Center for Severe Weather Research, accessed 15 June 2020, https://doi.org/10.48514/NK1P-7J11.

    • Crossref
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 709 709 60
Full Text Views 168 168 15
PDF Downloads 197 197 12

Convective-Storm Environments in Subtropical South America from High-Frequency Soundings during RELAMPAGO-CACTI

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 3 Center for Severe Weather Research, Boulder, Colorado
  • | 4 Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI IFAECI/CNRS-CONICET-UBA), Departamento de Ciencias de la Atmósfera y los Océanos, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
  • | 5 Servicio Meteorológico Nacional, Argentina
  • | 6 Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

During the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations-Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO-CACTI) field experiments in 2018–19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018–30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evolution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. A total of 11 soundings showed most unstable convective available potential energy (MUCAPE) exceeding 6000 J kg−1, comparable to the extreme instability observed in other parts of the world with intense deep convection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily because of insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively generated cold pools, the South American low-level jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible.

Significance Statement

Unprecedented balloon-borne measurements of the atmosphere (known as soundings) were collected in Argentina in 2018–19, during the RELAMPAGO-CACTI field projects. These measurements allowed us to characterize the conditions supporting some of the most intense thunderstorms on Earth, which are known to occur in this region. The ingredients needed for severe thunderstorms—moisture, instability, lift, and vertical wind shear—were present in several multiday episodes. The sounding data revealed that conditions were often favorable for rotating storms and large hail, but not for tornadoes. Measurements taken from mobile platforms also revealed detailed pictures of how storms influence their surroundings. This dataset will enable comparisons between storm environments in South America and other regions with intense thunderstorms that have not previously been possible.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Russ Schumacher, russ.schumacher@colostate.edu

Abstract

During the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations-Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO-CACTI) field experiments in 2018–19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018–30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evolution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. A total of 11 soundings showed most unstable convective available potential energy (MUCAPE) exceeding 6000 J kg−1, comparable to the extreme instability observed in other parts of the world with intense deep convection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily because of insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively generated cold pools, the South American low-level jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible.

Significance Statement

Unprecedented balloon-borne measurements of the atmosphere (known as soundings) were collected in Argentina in 2018–19, during the RELAMPAGO-CACTI field projects. These measurements allowed us to characterize the conditions supporting some of the most intense thunderstorms on Earth, which are known to occur in this region. The ingredients needed for severe thunderstorms—moisture, instability, lift, and vertical wind shear—were present in several multiday episodes. The sounding data revealed that conditions were often favorable for rotating storms and large hail, but not for tornadoes. Measurements taken from mobile platforms also revealed detailed pictures of how storms influence their surroundings. This dataset will enable comparisons between storm environments in South America and other regions with intense thunderstorms that have not previously been possible.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Russ Schumacher, russ.schumacher@colostate.edu
Save