• Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, https://doi.org/10.1175/2007MWR1904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrei, S., B. Antonescu, M. Boldeanu, L. Mărmureanu, C. A. Marin, J. Vasilescu, and D. Ene, 2019: An exceptional case of freezing rain in bucharest (Romania). Atmosphere, 10, 673, https://doi.org/10.3390/atmos10110673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., 2000: Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. Wea. Forecasting, 15, 485508, https://doi.org/10.1175/1520-0434(2000)015<0485:RALIOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., A. H. Sobel, S. J. Camargo, and T. T. Creyts, 2012: Projected changes in the physical climate of the Gulf Coast and Caribbean. Climatic Change, 112, 819845, https://doi.org/10.1007/s10584-011-0254-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, C. F., 1920: The nature of sleet and how it is formed. Mon. Wea. Rev., 48, 6972, https://doi.org/10.1175/1520-0493(1920)48<69b:TNOSAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellano, C. M., 2012: Synoptic and mesoscale aspects of ice storms in the northeastern U.S. M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 149 pp.

  • Changnon, S. A., 2003: Characteristics of ice storms in the United States. J. Appl. Meteor., 42, 630639, https://doi.org/10.1175/1520-0450(2003)042<0630:COISIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 13971411, https://doi.org/10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuhrmann, C. M., and C. E. Konrad, 2013: A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina. Wea. Forecasting, 28, 647667, https://doi.org/10.1175/WAF-D-12-00079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., and P. J. Roebber, 2001: The 1998 ice storm––Analysis of a planetary-scale event. Mon. Wea. Rev., 129, 29832997, https://doi.org/10.1175/1520-0493(2001)129<2983:TISAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and G. A. Norman, 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116, 21722182, https://doi.org/10.1175/1520-0493(1988)116<2172:TSWRPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762781, https://doi.org/10.1175/1520-0493(1988)116<0762:AGOPFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCray, C. D., E. H. Atallah, and J. R. Gyakum, 2019: Long-duration freezing rain events over North America: Regional climatology and thermodynamic evolution. Wea. Forecasting, 34, 665681, https://doi.org/10.1175/WAF-D-18-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCray, C. D., J. R. Gyakum, and E. H. Atallah, 2020: Regional thermodynamic characteristics distinguishing long- and short-duration freezing rain events over North America. Wea. Forecasting, 35, 657671, https://doi.org/10.1175/WAF-D-19-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meisinger, C. L., 1920: The precipitation of sleet and the formation of glaze in the eastern United States, January 20 to 25, 1920, with remarks on forecasting. Mon. Wea. Rev., 48, 7380, https://doi.org/10.1175/1520-0493(1920)48<73b:TPOSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., E. H. Atallah, J. R. Gyakum, and G. Dookhie, 2014: Synoptic typing and precursors of heavy warm-season precipitation events at Montreal, Québec. Wea. Forecasting, 29, 419444, https://doi.org/10.1175/WAF-D-13-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., J. R. Gyakum, and E. H. Atallah, 2015: A meteorological analysis of the 2013 Alberta flood: Antecedent large-scale flow pattern and synoptic–dynamic characteristics. Mon. Wea. Rev., 143, 28172841, https://doi.org/10.1175/MWR-D-14-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullens, E. D., 2014: Moisture and thermal characteristics of Southern Plains ice storms: Insights from a regional climatology and high-resolution WRF-ARW sensitivity study. Ph.D. thesis, University of Oklahoma, 342 pp.

  • Mullens, E. D., L. M. Leslie, and P. J. Lamb, 2016a: Impacts of Gulf of Mexico SST anomalies on southern plains freezing precipitation: ARW sensitivity study of the 28–30 January 2010 winter storm. J. Appl. Meteor. Climatol., 55, 119143, https://doi.org/10.1175/JAMC-D-14-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullens, E. D., L. M. Leslie, and P. J. Lamb, 2016b: Synoptic pattern analysis and climatology of ice and snowstorms in the southern Great Plains, 1993–2011. Wea. Forecasting, 31, 11091136, https://doi.org/10.1175/WAF-D-15-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, C., D. Schultz, and G. Vaughan, 2020: A midlatitude climatology and interannual variability of 200- and 500-hPa cutoff lows. J. Climate, 33, 22012222, https://doi.org/10.1175/JCLI-D-19-0497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos da Silva, R., G. Bohrer, D. Werth, M. J. Otte, and R. Avissar, 2006: Sensitivity of ice storms in the southeastern United States to Atlantic SST—Insights from a case study of the December 2002 storm. Mon. Wea. Rev., 134, 14541464, https://doi.org/10.1175/MWR3127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., M. K. Ramamurthy, and A. Tokay, 1994: Synoptic and mesoscale structure of a severe freezing rain event: The St. Valentine’s Day ice storm. Wea. Forecasting, 9, 183208, https://doi.org/10.1175/1520-0434(1994)009<0183:SAMSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, https://doi.org/10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, D. Miller, and K. E. Kunkel, 2001: A synoptic weather pattern and sounding-based climatology of freezing precipitation in the United States East of the Rocky Mountains. J. Appl. Meteor., 40, 17241747, https://doi.org/10.1175/1520-0450(2001)040<1724:ASWPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ressler, G. M., S. M. Milrad, E. H. Atallah, and J. R. Gyakum, 2012: Synoptic-scale analysis of freezing rain events in Montreal, Quebec, Canada. Wea. Forecasting, 27, 362378, https://doi.org/10.1175/WAF-D-11-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robbins, C. C., and J. V. Cortinas, 2002: Local and synoptic environments associated with freezing rain in the contiguous United States. Wea. Forecasting, 17, 4765, https://doi.org/10.1175/1520-0434(2002)017<0047:LASEAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., and L. F. Bosart, 1998: The sensitivity of precipitation to circulation details. Part I: An analysis of regional analogs. Mon. Wea. Rev., 126, 437455, https://doi.org/10.1175/1520-0493(1998)126<0437:TSOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., and J. R. Gyakum, 2003: Orographic influences on the mesoscale structure of the 1998 ice storm. Mon. Wea. Rev., 131, 2750, https://doi.org/10.1175/1520-0493(2003)131<0027:OIOTMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryerson, C. C., and A. C. Ramsay, 2007: Quantitative ice accretion information from the Automated Surface Observing System. J. Appl. Meteor. Climatol., 46, 14231437, https://doi.org/10.1175/JAM2535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, K., and B. L. Barjenbruch, 2016: Analysis of ice-to-liquid ratios during freezing rain and the development of an ice accumulation model. Wea. Forecasting, 31, 10411060, https://doi.org/10.1175/WAF-D-15-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, K., C. Gravelle, J. Gagan, and C. Graves, 2013: Characteristics of major ice storms in the central United States. J. Oper. Meteor., 1, 100113, https://doi.org/10.15191/nwajom.2013.0110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—version 2.0. Geosci. Model Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Wasserstein, R. L., and N. A. Lazar, 2016: The ASA statement on p-values: Context, process, and purpose. Amer. Stat., 70, 129133, https://doi.org/10.1080/00031305.2016.1154108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points” How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and Coauthors, 2011: The Great 2008 Chinese ice storm: Its socioeconomic–ecological impact and sustainability lessons learned. Bull. Amer. Meteor. Soc., 92, 4760, https://doi.org/10.1175/2010BAMS2857.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 28 28 28
Full Text Views 12 12 12
PDF Downloads 18 18 18

Synoptic–Dynamic and Airmass Characteristics Distinguishing Long- and Short-Duration Freezing Rain Events in the South-Central United States

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • 2 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
© Get Permissions
Restricted access

Abstract

Though prolonged freezing rain events are rare, they can result in substantial damage when they occur. While freezing rain occurs less frequently in the south-central United States than in some regions of North America, a large number of extremely long-duration events lasting at least 18 h have been observed there. We explore the key synoptic–dynamic conditions that lead to these extreme events through a comparison with less severe short-duration events. We produce synoptic–dynamic composites and 7-day backward trajectories for parcels ending in the warm and cold layers for each event category. The extremely long-duration events are preferentially associated with a deeper and more stationary 500-hPa longwave trough centered over the southwestern United States at event onset. This trough supports sustained flow of warm, moist air from within the planetary boundary layer over the Gulf of Mexico northward into the warm layer. The short-duration cases are instead characterized by a more transient upper-level trough axis centered over the south-central U.S. region at onset. Following event onset, rapid passage of the trough leads to quasigeostrophic forcing for descent and the advection of cold, dry air that erodes the warm layer and ends precipitation. While trajectories ending in the cold layer are very similar between the two categories, those ending in the warm layer have a longer history over the Gulf of Mexico in the extreme cases compared with the short-duration ones, resulting in warmer and moister onset warm layers.

McCray’s current affiliation: Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Québec, Canada.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher D. McCray, mccray.christopher_david@uqam.ca

Abstract

Though prolonged freezing rain events are rare, they can result in substantial damage when they occur. While freezing rain occurs less frequently in the south-central United States than in some regions of North America, a large number of extremely long-duration events lasting at least 18 h have been observed there. We explore the key synoptic–dynamic conditions that lead to these extreme events through a comparison with less severe short-duration events. We produce synoptic–dynamic composites and 7-day backward trajectories for parcels ending in the warm and cold layers for each event category. The extremely long-duration events are preferentially associated with a deeper and more stationary 500-hPa longwave trough centered over the southwestern United States at event onset. This trough supports sustained flow of warm, moist air from within the planetary boundary layer over the Gulf of Mexico northward into the warm layer. The short-duration cases are instead characterized by a more transient upper-level trough axis centered over the south-central U.S. region at onset. Following event onset, rapid passage of the trough leads to quasigeostrophic forcing for descent and the advection of cold, dry air that erodes the warm layer and ends precipitation. While trajectories ending in the cold layer are very similar between the two categories, those ending in the warm layer have a longer history over the Gulf of Mexico in the extreme cases compared with the short-duration ones, resulting in warmer and moister onset warm layers.

McCray’s current affiliation: Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Québec, Canada.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher D. McCray, mccray.christopher_david@uqam.ca
Save