• Alexander, M. A., and C. Penland, 1996: Variability in a mixed layer ocean model driven by stochastic atmospheric forcing. J. Climate, 9, 24242442, https://doi.org/10.1175/1520-0442(1996)009<2424:VIAMLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105, 16 82316 842, https://doi.org/10.1029/2000JC900074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, N., and Coauthors, 2021: The Navy’s Earth System Prediction Capability: A new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting. Earth Space Sci., https://doi.org/10.1029/2020EA001199, in press.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., S. Frolov, D. R. Allen, D. D. Kuhl, and K. Hoppel, 2017: The local ensemble tangent linear model: An enabler for coupled model 4DVAR. Quart. J. Roy. Meteor. Soc., 143, 10091020, https://doi.org/10.1002/qj.2986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., and Coauthors, 2017: Inflation and localisation tests in the development of an ensemble of 4D-ensemble variational assimilations. Quart. J. Roy. Meteor. Soc., 143, 12801302, https://doi.org/10.1002/qj.3004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, D., M. Münnich, I. Frenger, and N. Gruber, 2016: Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nat. Commun., 7, ncomms11867, https://doi.org/10.1038/ncomms11867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881, https://doi.org/10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2014: Ocean data impacts in global HYCOM. J. Atmos. Oceanic Technol., 31, 17711791, https://doi.org/10.1175/JTECH-D-14-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. Bates, and S. Wahl, 1993: The influence of sea surface temperature gradients on stratiform cloudiness along the equatorial front in the Pacific Ocean. J. Climate, 6, 11721180, https://doi.org/10.1175/1520-0442(1993)006<1172:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., K. Haines, and E. de Boisséson, 2018: Coupling of surface air and sea surface temperatures in the CERA-20C reanalysis. Quart. J. Roy. Meteor. Soc., 144, 195207, https://doi.org/10.1002/qj.3194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frolov, S., C. H. Bishop, T. R. Holt, J. A. Cummings, and D. D. Kuhl, 2016: Facilitating strongly coupled ocean–atmosphere data assimilation with an interface solver. Mon. Wea. Rev., 144, 320, https://doi.org/10.1175/MWR-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frolov, S., W. Campbel, B. Ruston, C. H. Bishop, D. D. Kuhl, M. K. Flatau, and J. G. McLay, 2020: Assimilation of low-peaking satellite observations using the coupled interface framework. Mon. Wea. Rev., 148, 637654, https://doi.org/10.1175/MWR-D-19-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 15001506, https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2, .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitt, H. T., and Coauthors, 2016: The impact of resolving the Rossby radius at mid-latitudes in the ocean: Results from a high-resolution version of the Met Office GC2 coupled model. Geosci. Model Dev., 9, 36553670, https://doi.org/10.5194/gmd-9-3655-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, C., C. DeLuca, B. Balaji, M. Suarez, and A. Da Silva, 2004: The architecture of the earth system modeling framework. Comput. Sci. Eng., 6, 1828, https://doi.org/10.1109/MCISE.2004.1255817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1987: The Gulf Stream rainband. Geophys. Res. Lett., 14, 11421145, https://doi.org/10.1029/GL014i011p01142.

  • Hogan, T. F., 2007: Land surface modeling in the Navy Operational Global Atmospheric Prediction System. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 11B.1, https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_123403.htm.

  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27, 116125, https://doi.org/10.5670/oceanog.2014.73.

  • Holt, T. R., J. A. Cummings, C. H. Bishop, J. D. Doyle, X. Hong, S. Chen, and Y. Jin, 2011: Development and testing of a coupled ocean–atmosphere mesoscale ensemble prediction system. Ocean Dyn., 61, 19371954, https://doi.org/10.1007/s10236-011-0449-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 12251242, https://doi.org/10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2015: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual version 4.0. Los Alamos National Laboratory, 72 pp.

  • Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, and L. Raynaud, 2010: Ensemble of data assimilations at ECMWF. ECMWF Tech. Memo. 636, 48 pp., https://doi.org/10.21957/obke4k60.

    • Crossref
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22, 10801094, https://doi.org/10.1175/JTECH1747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T., N. Schneider, and B. Qiu, 2016: Atmospheric response to a midlatitude SST front: Alongfront winds. J. Atmos. Sci., 73, 34893509, https://doi.org/10.1175/JAS-D-15-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, https://doi.org/10.1007/s00382-012-1500-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komori, N., T. Enomoto, T. Miyoshi, A. Yamazaki, A. Kuwano-Yoshida, and B. Taguchi,2018: Ensemble-based atmospheric reanalysis using a global coupled atmosphere–ocean GCM. Mon. Wea. Rev., 146, 33113323, https://doi.org/10.1175/MWR-D-17-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, https://doi.org/10.1175/MWR-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2015: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 6578, https://doi.org/doi:10.1002/qj.2629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., S. Frolov, B. Menetrier, and M. Bonavita, 2018: Implicit and explicit cross-correlations in coupled data assimilation. Quart. J. Roy. Meteor. Soc., 144, 18511863, https://doi.org/10.1002/qj.3373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurindo, L. C., L. Siqueira, A. J. Mariano, and B. P. Kirtman, 2019: Cross-spectral analysis of the SST/10-m wind speed coupling resolved by satellite products and climate model simulations. Climate Dyn., 52, 50715098, https://doi.org/10.1007/s00382-018-4434-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lea, D. J., I. Mirouze, M. J. Martin, R. R. King, A. Hines, D. Walters, and M. Thurlow, 2015: Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere–land–ocean–sea ice model. Mon. Wea. Rev., 143, 46784694, https://doi.org/10.1175/MWR-D-15-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., D. B. Baranowski, K. J. Heywood, P. J. Flatau, and S. Schmidtko, 2014: The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO. J. Climate, 27, 91019122, https://doi.org/10.1175/JCLI-D-14-00222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 2750, https://doi.org/10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, J., and Coauthors, 2014: U.S. Navy operational global ocean and Arctic ice prediction systems. Oceanography, 27, 3243, https://doi.org/10.5670/oceanog.2014.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S. P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci., 74, 23832412, https://doi.org/10.1175/JAS-D-16-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., and A. Czaja, 2016: On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. Roy. Meteor. Soc., 142, 15541561, https://doi.org/10.1002/qj.2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and Coauthors, 2017: Coupled data assimilation for integrated earth system analysis and prediction: Goals, challenges and recommendations. WWRP 2017-3, 59 pp., https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf.

  • Pullen, J., and Coauthors, 2017: Coupled ocean-atmosphere forecasting at short and medium time scales. J. Mar. Res., 75, 877921, https://doi.org/10.1357/002224017823523991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled ocean-atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 6078, https://doi.org/10.1016/j.dynatmoce.2013.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridout, J. A., Y. Jin, and C. S. Liou, 2005: A cloud-base quasi-balance constraint for parameterized convection: Application to the Kain–Fritsch cumulus scheme. Mon. Wea. Rev., 133, 33153334, https://doi.org/10.1175/MWR3034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2019: Midlatitude mesoscale ocean-atmosphere interaction and its relevance to S2S prediction. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 183–200.

    • Crossref
    • Export Citation
  • Schneider, N., and B. Qiu, 2015: The atmospheric response to weak sea surface temperature fronts. J. Atmos. Sci., 72, 33563377, https://doi.org/10.1175/JAS-D-14-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sluka, T. C., S. G. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752759, https://doi.org/10.1002/2015GL067238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, and R. A. Tomas, 2019: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability? J. Climate, 32, 23972421, https://doi.org/10.1175/JCLI-D-18-0576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. J., A. S. Lawless, and N. K. Nichols, 2017: Estimating forecast error covariances for strongly coupled atmosphere–ocean 4D-var data assimilation. Mon. Wea. Rev., 145, 40114035, https://doi.org/10.1175/MWR-D-16-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theurich, G., and Coauthors, 2016: The earth system prediction suite: Toward a coordinated U.S. modeling capability. Bull. Amer. Meteor. Soc., 97, 12291247, https://doi.org/10.1175/BAMS-D-14-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and M. Balmaseda, 2018: Impact of sea surface temperature biases on extended-range forecasts. ECMWF Tech. Memo. 830, 21 pp., https://doi.org/10.21957/xvbl914ps.

    • Crossref
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007: Regimes of seasonal air-sea interaction and implications for performance of forced simulations. Climate Dyn., 29, 393410, https://doi.org/10.1007/s00382-007-0246-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, https://doi.org/10.1175/BAMS-85-2-195.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 83 83 83
Full Text Views 41 41 41
PDF Downloads 56 56 56

Coupled Ocean–Atmosphere Covariances in Global Ensemble Simulations: Impact of an Eddy-Resolving Ocean

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
  • 2 NOAA/Physical Sciences Laboratory, Boulder, Colorado
  • 3 Marine Meteorology Division, Naval Research Laboratory, Monterey, California
  • 4 Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi
© Get Permissions
Restricted access

Abstract

Patterns of correlations between the ocean and the atmosphere are examined using a high-resolution (1/12° ocean and ice, 1/3° atmosphere) ensemble of data assimilative, coupled, global, ocean–atmosphere forecasts. This provides a unique perspective into atmosphere–ocean interactions constrained by assimilated observations, allowing for the contrast of patterns of coupled processes across regions and the examination of processes affected by ocean mesoscale eddies. Correlations during the first 24 h of the coupled forecast between the ocean surface temperature and atmospheric variables, and between the ocean mixed layer depth and surface winds are examined as a function of region and season. Three distinct coupling regimes emerge: 1) regions characterized by strong sea surface temperature fronts, where uncertainty in the ocean mesoscale influences ocean–atmosphere exchanges; 2) regions with intense atmospheric convection over the tropical oceans, where uncertainty in the modeled atmospheric convection impacts the upper ocean; and 3) regions where the depth of the seasonal mixed layer (MLD) determines the magnitude of the coupling, which is stronger when the MLD is shallow and weaker when the MLD is deep. A comparison with models at lower horizontal (1/12° vs 1° and 1/4°) and vertical (1- vs 10-m depth of the first layer) ocean resolution reveals that coupling in the boundary currents, the tropical Indian Ocean, and the warm pool regions requires high levels of horizontal and vertical resolution. Implications for coupled data assimilation and short-term forecasting are discussed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0352.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergey Frolov, sergey.frolov@noaa.gov

Abstract

Patterns of correlations between the ocean and the atmosphere are examined using a high-resolution (1/12° ocean and ice, 1/3° atmosphere) ensemble of data assimilative, coupled, global, ocean–atmosphere forecasts. This provides a unique perspective into atmosphere–ocean interactions constrained by assimilated observations, allowing for the contrast of patterns of coupled processes across regions and the examination of processes affected by ocean mesoscale eddies. Correlations during the first 24 h of the coupled forecast between the ocean surface temperature and atmospheric variables, and between the ocean mixed layer depth and surface winds are examined as a function of region and season. Three distinct coupling regimes emerge: 1) regions characterized by strong sea surface temperature fronts, where uncertainty in the ocean mesoscale influences ocean–atmosphere exchanges; 2) regions with intense atmospheric convection over the tropical oceans, where uncertainty in the modeled atmospheric convection impacts the upper ocean; and 3) regions where the depth of the seasonal mixed layer (MLD) determines the magnitude of the coupling, which is stronger when the MLD is shallow and weaker when the MLD is deep. A comparison with models at lower horizontal (1/12° vs 1° and 1/4°) and vertical (1- vs 10-m depth of the first layer) ocean resolution reveals that coupling in the boundary currents, the tropical Indian Ocean, and the warm pool regions requires high levels of horizontal and vertical resolution. Implications for coupled data assimilation and short-term forecasting are discussed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0352.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergey Frolov, sergey.frolov@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 1.04 MB)
Save