• Clarke, R. H., 1972: The morning glory: An atmospheric hydraulic jump. J. Appl. Meteor., 11, 304311, https://doi.org/10.1175/1520-0450(1972)011<0304:TMGAAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity-waves. J. Atmos. Sci., 45, 15331541, https://doi.org/10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645654, https://doi.org/10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, P. J., and P. A. Kucera, 2003: Radar characteristics of convection along colliding outflow boundaries observed during CRYSTAL-FACE. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 12A.8, https://ams.confex.com/ams/32BC31R5C/webprogram/Paper64232.html.

  • Geerts, B., and Q. Miao, 2005: Airborne radar observations of the flight behavior of small insects in the atmospheric convective boundary layer. Environ. Entomol., 34, 361377, https://doi.org/10.1603/0046-225X-34.2.361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev., 134, 251271, https://doi.org/10.1175/MWR3056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night Field Project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and Coauthors, 2019: Bore-ing into nocturnal convection. Bull. Amer. Meteor. Soc., 100, 11031121, https://doi.org/10.1175/BAMS-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. J., J. R. Mecikalski, and K. R. Knupp, 2009: Analysis of outflow boundary collisions in north-central Alabama. Wea. Forecasting, 24, 16801690, https://doi.org/10.1175/2009WAF2222268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., A. J. Bedard, and R. M. Hardesty, 1990: Details of colliding thunderstorm outflows as observed by Doppler lidar. J. Atmos. Sci., 47, 10811099, https://doi.org/10.1175/1520-0469(1990)047<1081:DOCTOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2019: Multicase assessment of the impacts of horizontal and vertical grid spacing, and turbulence closure model, on subkilometer-scale simulations of atmospheric bores during PECAN. Mon. Wea. Rev., 147, 15331555, https://doi.org/10.1175/MWR-D-18-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karan, H., and K. Knupp, 2009: Radar and profiler analysis of colliding boundaries: A case study. Mon. Wea. Rev., 137, 22032222, https://doi.org/10.1175/2008MWR2763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 29132933, https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and N. A. Crook, 2003: An observational study of atmospheric bore formation from colliding density currents. Mon. Wea. Rev., 131, 29853002, https://doi.org/10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and Coauthors, 2016: Mobile PISA 1 OU/NSSL CLAMPS radiosonde data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 26 August 2020, https://doi.org/10.5065/D6416VDH.

    • Crossref
    • Export Citation
  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1997: On the propagation of internal bores. J. Fluid Mech., 331, 81106, https://doi.org/10.1017/S0022112096003710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, https://doi.org/10.1175/JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, https://doi.org/10.1175/JTECH-1662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, https://doi.org/10.1175/JTECH-1663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, G., B. Geerts, Z. E. Wang, C. Grasmick, X. Q. Jing, and J. Yang, 2019: Interactions between a nocturnal MCS and the stable boundary layer as observed by an airborne compact Raman lidar during PECAN. Mon. Wea. Rev., 147, 31693189, https://doi.org/10.1175/MWR-D-18-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., Z. Wang, Y. Cai, P. Wechsler, W. Kuestner, M. Burkhart, and W. Welch, 2014: Compact airborne Raman lidar for profiling aerosol, water vapor and clouds. Opt. Express, 22, 20 61320 621, https://doi.org/10.1364/OE.22.020613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveless, D. M., T. J. Wagner, D. D. Turner, S. A. Ackerman, and W. F. Feltz, 2019: A composite perspective on bore passages during the PECAN campaign. Mon. Wea. Rev., 147, 13951413, https://doi.org/10.1175/MWR-D-18-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Q., and B. Geerts, 2007: Finescale vertical structure and dynamics of some dryline boundaries observed in IHOP. Mon. Wea. Rev., 135, 41614184, https://doi.org/10.1175/2007MWR1982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. A., M. F. Barth, L. A. Benjamin, R. S. Artz, and W. R. Pendergrass, 2005: The Meteorological Assimilation and Data Ingest System (MADIS): Providing value-added observations to the meteorological community. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc, https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_98637.htm.

  • Mueller, D., B. Geerts, Z. Wang, M. Deng, and C. Grasmick, 2017: Evolution and vertical structure of an undular bore observed on 20 June 2015 during PECAN. Mon. Wea. Rev., 145, 37753794, https://doi.org/10.1175/MWR-D-16-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdom, J., 1982: Subjective interpretation of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–166.

  • Roberts, R. D., and Coauthors, 2008: REFRACTT 2006: Real-time retrieval of high-resolution, low-level moisture fields from operational NEXRAD and research radars. Bull. Amer. Meteor. Soc., 89, 15351548, https://doi.org/10.1175/2008BAMS2412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, https://doi.org/10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, R. W., and J. W. Wilson, 1997: Radar-observed “fine lines” in the optically clear boundary layer: Reflectivity contributions from aerial plankton and its predators. Bound.-Layer Meteor., 82, 235262, https://doi.org/10.1023/A:1000237431851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1987: Gravity Currents in the Environment and the Laboratory. Ellis Horwood Limited, 244 pp.

  • Turner, D., 2016: MP1 OU/NSSL CLAMPS MWR and surface meteorology data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 26 August 2020, https://doi.org/10.5065/D6707ZT3.

    • Crossref
    • Export Citation
  • Turner, D., 2018: MP1 OU/NSSL CLAMPS AERIoe thermodynamic profile retrieval data, version 1.2. UCAR/NCAR–Earth Observing Laboratory, accessed 28 December 2020, https://doi.org/10.5065/D6VQ312C.

    • Crossref
    • Export Citation
  • Turner, D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR–Earth Observing Laboratory, 2011: NOAA/ESRL/GSD MADIS data including MesoWest (netCDF format), version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 26 August 2020, https://data.eol.ucar.edu/dataset/100.001.

  • University of Wyoming–Flight Center, 2007: The University of Wyoming Cloud Lidar (WCL). University of Wyoming, College of Engineering, Department of Atmospheric Science, accessed 20 March 2019, https://doi.org/10.15786/M25W9D.

    • Crossref
    • Export Citation
  • Vermeesch, K., 2015: FP2 Greensburg, KS radiosonde data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 28 December 2020, https://doi.org/10.5065/D6FQ9TPH.

    • Crossref
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and D. E. Kingsmill, 1995: Structure of an atmospheric undular bore generated from colliding boundaries during CaPE. Mon. Wea. Rev., 123, 13741393, https://doi.org/10.1175/1520-0493(1995)123<1374:SOAAUB>2.0.Co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, E. V. Browell, and S. Ismail, 2006: The “Triple Point” on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE analyses of the frontal boundaries and convection initiation. Mon. Wea. Rev., 134, 231250, https://doi.org/10.1175/MWR3066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2020: Airborne Compact Raman Lidar (CRL) water vapor and temperature profiles, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 8 December 2020, https://doi.org/10.26023/JYNH-KCZE-910F.

    • Crossref
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming cloud lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, https://doi.org/10.1364/OE.17.013576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2016: University of Wyoming King air compact Raman lidar data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 26 August 2020, https://doi.org/10.5065/D6MS3R0P.

    • Crossref
    • Export Citation
  • Waugh, S., and C. Ziegler, 2017: NSSL mobile mesonet data, version 1.1. UCAR/NCAR–Earth Observing Laboratory, accessed 26 August 2020, https://doi.org/10.5065/D64M92RG.

    • Crossref
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., and Coauthors, 2016: Airborne compact rotational Raman lidar for temperature measurement. Opt. Express, 24, A1210A1223, https://doi.org/10.1364/OE.24.0A1210.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 216 216 31
Full Text Views 104 104 7
PDF Downloads 116 116 6

Convection Initiation and Bore Formation Following the Collision of Mesoscale Boundaries over a Developing Stable Boundary Layer: A Case Study from PECAN

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 2 b Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado
  • | 3 c Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This observational study documents the consequences of a collision between two converging shallow atmospheric boundaries over the central Great Plains on the evening of 7 June 2015. This study uses data from a profiling airborne Raman lidar [the compact Raman lidar (CRL)] and other airborne and ground-based data collected during the Plains Elevated Convection at Night (PECAN) field campaign to investigate the collision between a weak cold front and the outflow from an MCS. The collision between these boundaries led to the lofting of high-CAPE, low-CIN air, resulting in deep convection, as well as an undular bore. Both boundaries behaved as density currents prior to collision. Because the MCS outflow boundary was denser and less deep than the cold-frontal air mass, the bore propagated over the latter. This bore was tracked by the CRL for about 3 h as it traveled north over the shallow cold-frontal surface and evolved into a soliton. This case study is unique by using the high temporal and spatial resolution of airborne Raman lidar measurements to describe the thermodynamic structure of interacting boundaries and a resulting bore.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhien Wang, Zhien.Wang@colorado.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

This observational study documents the consequences of a collision between two converging shallow atmospheric boundaries over the central Great Plains on the evening of 7 June 2015. This study uses data from a profiling airborne Raman lidar [the compact Raman lidar (CRL)] and other airborne and ground-based data collected during the Plains Elevated Convection at Night (PECAN) field campaign to investigate the collision between a weak cold front and the outflow from an MCS. The collision between these boundaries led to the lofting of high-CAPE, low-CIN air, resulting in deep convection, as well as an undular bore. Both boundaries behaved as density currents prior to collision. Because the MCS outflow boundary was denser and less deep than the cold-frontal air mass, the bore propagated over the latter. This bore was tracked by the CRL for about 3 h as it traveled north over the shallow cold-frontal surface and evolved into a soliton. This case study is unique by using the high temporal and spatial resolution of airborne Raman lidar measurements to describe the thermodynamic structure of interacting boundaries and a resulting bore.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhien Wang, Zhien.Wang@colorado.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save