• Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273287, https://doi.org/10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and et al. , 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berre, L., 2000: Estimation of synoptic and mesoscale forecast error covariances in a limited-area model. Mon. Wea. Rev., 128, 644667, https://doi.org/10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brousseau, P., and et al. , 2008: A prototype convective-scale data assimilation system for operation: The AROME-RUC. HIRLAM Tech. Rep. 68, 8 pp.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, https://doi.org/10.1256/qj.04.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, https://doi.org/10.1175/2009MWR3157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, https://doi.org/10.1175/2009MWR3158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, https://doi.org/10.5194/npg-20-669-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and et al. , 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carley, J. R., 2012: Hybrid ensemble-3DVar radar data assimilation for the short-term prediction of convective storms. Ph.D. dissertation, Purdue University, 205 pp.

  • Caron, J.-F., and L. Fillion, 2010: An examination of background error correlations between mass and rotational wind over precipitation regions. Mon. Wea. Rev., 138, 563578, https://doi.org/10.1175/2009MWR2998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094, https://doi.org/10.1175/MWR3021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and et al. , 2020: A real-time, simulated forecasting experiment for advancing the prediction of hazardous convective weather. Bull. Amer. Meteor. Soc., 101, E2022E2024, https://doi.org/10.1175/BAMS-D-19-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, https://doi.org/10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Dee, D. P., and A. M. Da Silva, 2003: The choice of variable for atmospheric moisture analysis. Mon. Wea. Rev., 131, 155171, https://doi.org/10.1175/1520-0493(2003)131<0155:TCOVFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 13331347, https://doi.org/10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J., and F. Bouttier, 1999: A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus, 51A, 195221, https://doi.org/10.3402/tellusa.v51i2.12316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Descombes, G., T. Auligné, F. Vandenberghe, D. M. Barker, and J. Barré, 2015: Generalized background error covariance matrix model (GEN-BE v2.0). Geosci. Model Dev., 8, 669696, https://doi.org/10.5194/gmd-8-669-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, C. Snyder, D. C. Dowell, L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., X. Wang, Y. Wang, J. R. Carley, 2019: Comparing the assimilation of radar reflectivity using the direct GSI-based ensemble–variational (EnVar) and indirect cloud analysis methods in convection-allowing forecasts over the continental United States. Mon. Wea. Rev., 147, 16551678, https://doi.org/10.1175/MWR-D-18-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, M., 2003: Background error covariance modeling. Proc. ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 45–64.

  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, https://doi.org/10.1175/JAS-D-11-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2014: Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar data assimilation. Mon. Wea. Rev., 142, 33263346, https://doi.org/10.1175/MWR-D-14-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, and D. J. Stensrud, 2013: The development of a hybrid EnKF-3DVAR algorithm for storm-scale data assimilation. Adv. Meteor., 2013, 512656, https://doi.org/10.1155/2013/512656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasperoni, N. A., X. Wang, and Y. Wang, 2020: A comparison of methods to sample model errors for convection-allowing ensemble forecasts in the setting of multiscale initial conditions produced by the GSI-based EnVar assimilation system. Mon. Wea. Rev., 148, 11771203, https://doi.org/10.1175/MWR-D-19-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34, 315, https://doi.org/10.1175/1520-0450-34.1.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507525, https://doi.org/10.1175/MWR3313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, https://doi.org/10.1175/MWR3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and et al. , 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299314, https://doi.org/10.1175/2008MWR2577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Ingleby, N., 2001: The statistical structure of forecast errors and its representation in The Met. Office global 3-D variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 127, 209231, https://doi.org/10.1002/qj.49712757112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Johnson, A., and et al. , 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, R., M. Xue, and C. Liu, 2018: Development of a hybrid En3DVar data assimilation system and comparisons with 3DVar and EnKF for radar data assimilation with observing system simulation experiments. Mon. Wea. Rev., 146, 175198, https://doi.org/10.1175/MWR-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Wang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF hybrid ensemble–3DVAR system for the prediction of Hurricane Ike (2008). Mon. Wea. Rev., 140, 35073524, https://doi.org/10.1175/MWR-D-12-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779798.

  • Liu, C. S., M. Xue, and R. Kong, 2019: Direct assimilation of radar reflectivity data using 3DVAR: Treatment of hydrometeor background errors and OSSE tests. Mon. Wea. Rev., 147, 1729, https://doi.org/10.1175/MWR-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and et al. , 2000: The Met.Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 29913012, https://doi.org/10.1002/qj.49712657002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ménétrier, B., and T. Montmerle, 2011: Heterogeneous background-error covariances for the analysis and forecast of fog events. Quart. J. Roy. Meteor. Soc., 137, 20042013, https://doi.org/10.1002/qj.802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, Y., T. Auligné, and T. Montmerle, 2011: Heterogeneous convective-scale background error covariances with the inclusion of hydrometeor variables. Mon. Wea. Rev., 139, 29943015, https://doi.org/10.1175/2011MWR3632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2019: An adaptive background error inflation method for assimilating all-sky radiances. Quart. J. Roy. Meteor. Soc., 145, 805823, https://doi.org/10.1002/qj.3466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montmerle, T., and L. Berre, 2010: Diagnosis and formulation of heterogeneous background-error covariances at the mesoscale. Quart. J. Roy. Meteor. Soc., 136, 14081420, https://doi.org/10.1002/qj.655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montmerle, T., Y. Michel, E. Arbogast, B. Ménétrier, and P. Brousseau, 2018: A 3D ensemble variational data assimilation scheme for the limited-area AROME model: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 144, 21962215, https://doi.org/10.1002/qj.3334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003a: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003b: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 15361548, https://doi.org/10.1175//2543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, https://doi.org/10.1175/2008MWR2330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2016: Improving large-domain convection-allowing forecasts with high-resolution analyses and ensemble data assimilation. Mon. Wea. Rev., 144, 17771803, https://doi.org/10.1175/MWR-D-15-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Convective-scale assimilation of radar data: Progress and challenges. Quart. J. Roy. Meteor. Soc., 131, 34393463, https://doi.org/10.1256/qj.05.149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of three-dimensional wind and temperature fields from single-Doppler radar data. J. Atmos. Sci., 48, 876890, https://doi.org/10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, W. Tong, Y. Zhang, C.-Y. Lin, and D. Xu, 2016: Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Wea. Rev., 144, 149169, https://doi.org/10.1175/MWR-D-14-00205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. R. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, S. Fan, and X.-Y. Huang, 2013a: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889902, https://doi.org/10.1175/JAMC-D-12-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X. Huang, and T. Auligne, 2013b: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244, https://doi.org/10.1175/MWR-D-12-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2007a: A comparison of hybrid ensemble transform Kalman filter-optimum interpolation and ensemble square root filter analysis schemes. Mon. Wea. Rev., 135, 10551076, https://doi.org/10.1175/MWR3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Snyder, and T. M. Hamill, 2007b: On the theoretical equivalence of differently proposed ensemble–3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222227, https://doi.org/10.1175/MWR3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, T. M. Hamill, X. Wang, D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, https://doi.org/10.1175/2008MWR2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, https://doi.org/10.1175/2008MWR2445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2009: A comparison of the hybrid and EnSRF analysis schemes in the presence of model error due to unresolved scales. Mon. Wea. Rev., 137, 32193232, https://doi.org/10.1175/2009MWR2923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. S. Whitaker, 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: Single resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2020: Prediction of tornado-like vortex (TLV) embedded in the 8 May 2003 Oklahoma City tornadic supercell initialized from the subkilometer grid spacing analysis produced by the dual-resolution GSI-based EnVar data assimilation system. Mon. Wea. Rev., 148, 29092934, https://doi.org/10.1175/MWR-D-19-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-H., J. Gao, P. S. Skinner, K. Knopfmeier, T. Jones, G. Creager, P. L. Heiselman, and L. J. Wicker, 2019: Test of a weather-adaptive dual-resolution hybrid warn-on-forecast analysis and forecast system for several severe weather events. Wea. Forecasting, 34, 18071827, https://doi.org/10.1175/WAF-D-19-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and J. Purser, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3D-Var system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768788, https://doi.org/10.1175/JAM2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y., and A. E. MacDonald, 2012: Selection of momentum variables for a three-dimensional variational analysis. Pure Appl. Geophys., 169, 335351, https://doi.org/10.1007/s00024-011-0374-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 22292249, https://doi.org/10.1175/1520-0493(1995)123<2229:AOARRU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 73 73 12
Full Text Views 51 51 15
PDF Downloads 70 70 19

Development of Convective-Scale Static Background Error Covariance within GSI-Based Hybrid EnVar System for Direct Radar Reflectivity Data Assimilation

View More View Less
  • 1 a School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A convective-scale static background-error covariance (BEC) matrix is further developed to include the capability of direct reflectivity assimilation and evaluated within the GSI-based three-dimensional variational (3DVar) and hybrid ensemble–variational (EnVar) methods. Specific developments are summarized as follows: 1) Control variables (CVs) are extended to include reflectivity, vertical velocity, and all hydrometeor types. Various horizontal momentum and moisture CV options are included. 2) Cross correlations between all CVs are established. 3) A storm intensity-dependent binning method is adopted to separately calculate static error matrices for clear-air and storms with varying intensities. The resultant static BEC matrices are simultaneously applied at proper locations guided by the observed reflectivity. 4) The EnVar is extended to adaptively incorporate static BECs based on the quality of ensemble covariances. Evaluation and examination of the new static BECs are first performed on the 8 May 2003 Oklahoma City supercell. Detailed diagnostics and 3DVar examinations suggest zonal/meridional winds and pseudo–relative humidity are selected as horizontal momentum and moisture CVs for direct reflectivity assimilation, respectively; inclusion of cross correlations favors spin up and maintains the analyzed storms; application of binning improves characteristics and persistence of the simulated storm. Relative to an experiment using the full ensemble BECs (Exp-PureEnVar), incorporating static BECs in hybrid EnVar reduces spinup time and better analyzes reflectivity distributions while the background ensemble is deficient in sampling errors. Compared to both pure 3DVar and Exp-PureEnVar, hybrid EnVar better predicts reflectivity distributions and better maintains a strong mesocyclone. Further examination through the 20 May 2013 Oklahoma supercells confirms these results and additionally demonstrates the effectiveness of adaptive hybridization.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

Abstract

A convective-scale static background-error covariance (BEC) matrix is further developed to include the capability of direct reflectivity assimilation and evaluated within the GSI-based three-dimensional variational (3DVar) and hybrid ensemble–variational (EnVar) methods. Specific developments are summarized as follows: 1) Control variables (CVs) are extended to include reflectivity, vertical velocity, and all hydrometeor types. Various horizontal momentum and moisture CV options are included. 2) Cross correlations between all CVs are established. 3) A storm intensity-dependent binning method is adopted to separately calculate static error matrices for clear-air and storms with varying intensities. The resultant static BEC matrices are simultaneously applied at proper locations guided by the observed reflectivity. 4) The EnVar is extended to adaptively incorporate static BECs based on the quality of ensemble covariances. Evaluation and examination of the new static BECs are first performed on the 8 May 2003 Oklahoma City supercell. Detailed diagnostics and 3DVar examinations suggest zonal/meridional winds and pseudo–relative humidity are selected as horizontal momentum and moisture CVs for direct reflectivity assimilation, respectively; inclusion of cross correlations favors spin up and maintains the analyzed storms; application of binning improves characteristics and persistence of the simulated storm. Relative to an experiment using the full ensemble BECs (Exp-PureEnVar), incorporating static BECs in hybrid EnVar reduces spinup time and better analyzes reflectivity distributions while the background ensemble is deficient in sampling errors. Compared to both pure 3DVar and Exp-PureEnVar, hybrid EnVar better predicts reflectivity distributions and better maintains a strong mesocyclone. Further examination through the 20 May 2013 Oklahoma supercells confirms these results and additionally demonstrates the effectiveness of adaptive hybridization.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu
Save