A Global Tropical Survey of Midtropospheric Cyclones

Pradeep Kushwaha aCentre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
bDivecha Centre for Climate Change, Indian Institute of Science, Bangalore, India

Search for other papers by Pradeep Kushwaha in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9403-5217
,
Jai Sukhatme aCentre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
bDivecha Centre for Climate Change, Indian Institute of Science, Bangalore, India

Search for other papers by Jai Sukhatme in
Current site
Google Scholar
PubMed
Close
, and
Ravi Nanjundiah aCentre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
cIndian Institute of Tropical Meteorology, Pune, India

Search for other papers by Ravi Nanjundiah in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Midtropospheric cyclones (MTCs) are moist synoptic systems with distinct midtropospheric vorticity maxima and weak signatures in the lower troposphere. Composites and statistics of tropical MTCs are constructed and compared with monsoon lows and depressions [together, lower-troposphere cyclones (LTCs)]. We begin with South Asia, where tracking reveals that MTCs change character during their life, i.e., their track comprises MTC and LTC phases. The highest MTC-phase density and least motion are over the Arabian Sea, followed by the Bay of Bengal and the South China Sea. An MTC-phase composite shows an east–west-tilted warm-core above a deep cold-core temperature anomaly with maximum vorticity at 600 hPa. In contrast, the LTC-phase shows a shallow cold core below 800 hPa and a warm upright temperature anomaly with a lower-tropospheric vorticity maximum. Globally, systems with MTC-like morphology are observed over west and central Africa and the east and west Pacific in boreal summer. In boreal winter, regions that support MTCs include northern Australia, the southern Indian Ocean, and southern Africa. MTC fraction is higher equatorward where there is a cross-equatorial low-level jet that advects oppositely signed vorticity, whereas LTCs are more prevalent farther poleward. Finally, a histogram of differential vorticity (the difference between middle and lower levels) versus the height of peak vorticity for cyclonic centers is shown to be bimodal. One peak, around 600 hPa, corresponds to MTCs, while the second, at approximately 900 hPa, comes from LTCs. Thus, moist cyclonic systems in the tropics have a natural tendency to reside in either the MTC or LTC category.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pradeep Kushwaha, pkushwaha9999@gmail.com.

Abstract

Midtropospheric cyclones (MTCs) are moist synoptic systems with distinct midtropospheric vorticity maxima and weak signatures in the lower troposphere. Composites and statistics of tropical MTCs are constructed and compared with monsoon lows and depressions [together, lower-troposphere cyclones (LTCs)]. We begin with South Asia, where tracking reveals that MTCs change character during their life, i.e., their track comprises MTC and LTC phases. The highest MTC-phase density and least motion are over the Arabian Sea, followed by the Bay of Bengal and the South China Sea. An MTC-phase composite shows an east–west-tilted warm-core above a deep cold-core temperature anomaly with maximum vorticity at 600 hPa. In contrast, the LTC-phase shows a shallow cold core below 800 hPa and a warm upright temperature anomaly with a lower-tropospheric vorticity maximum. Globally, systems with MTC-like morphology are observed over west and central Africa and the east and west Pacific in boreal summer. In boreal winter, regions that support MTCs include northern Australia, the southern Indian Ocean, and southern Africa. MTC fraction is higher equatorward where there is a cross-equatorial low-level jet that advects oppositely signed vorticity, whereas LTCs are more prevalent farther poleward. Finally, a histogram of differential vorticity (the difference between middle and lower levels) versus the height of peak vorticity for cyclonic centers is shown to be bimodal. One peak, around 600 hPa, corresponds to MTCs, while the second, at approximately 900 hPa, comes from LTCs. Thus, moist cyclonic systems in the tropics have a natural tendency to reside in either the MTC or LTC category.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pradeep Kushwaha, pkushwaha9999@gmail.com.

Supplementary Materials

    • Supplemental Materials (PDF 2.41 MB)
Save
  • Adames, A., and Y. Ming, 2018: Moisture and moist static energy budgets of South Asian monsoon low pressure systems in GFDL AM4.0. J. Atmos. Sci., 75, 21072123, https://doi.org/10.1175/JAS-D-17-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, M. Sapiano, J.-J. Wang, and G. J. Huffman, 2017: Global precipitation: Means, variations and trends during the satellite era (1979–2014). Surv. Geophys., 38, 679699, https://doi.org/10.1007/s10712-017-9416-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiyyer, A. R., and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 29692983, https://doi.org/10.1175/JCLI3685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and J. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, https://doi.org/10.1007/s003820100161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. Hodges, and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus, 59A, 396416, https://doi.org/10.1111/j.1600-0870.2007.00236.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and M. J. Reeder, 2016: The dynamics of Australian monsoon bursts. J. Atmos. Sci., 73, 5569, https://doi.org/10.1175/JAS-D-15-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W., J. Hurley, and V. Murthy, 2015: Adiabatic westward drift of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 141, 10351048, https://doi.org/10.1002/qj.2454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, F. H., 1977: Mid-tropospheric cyclones of the summer monsoon. Pure Appl. Geophys., 115, 13831412, https://doi.org/10.1007/BF00874415.

  • Choudhury, A. D., R. Krishnan, M. Ramarao, R. Vellore, M. Singh, and B. Mapes, 2018: A phenomenological paradigm for midtropospheric cyclogenesis in the Indian summer monsoon. J. Atmos. Sci., 75, 29312954, https://doi.org/10.1175/JAS-D-17-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S., M. Reeder, and C. Jakob, 2018: Rainfall regimes over northwestern Australia. Quart. J. Roy. Meteor. Soc., 144, 458467, https://doi.org/10.1002/qj.3217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., D. A. Ahijevych, and S. B. Trier, 2002: Detection and prediction of warm season midtropospheric vortices by the rapid update cycle. Mon. Wea. Rev., 130, 2442, https://doi.org/10.1175/1520-0493(2002)130<0024:DAPOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditchek, S. D., J. Molinari, K. L. Corbosiero, and R. G. Fovell, 2019: An objective climatology of tropical cyclone diurnal pulses in the Atlantic basin. Mon. Wea. Rev., 147, 591605, https://doi.org/10.1175/MWR-D-18-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135, https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B., 2005: South Asian summer monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. Lau and D. Waliser, Eds., Praxis, 125–173.

  • Goswami, B., R. Keshavamurty, and V. Satyan, 1980: Role of barotropic, baroclinic and combined barotropic-baroclinic instability for the growth of monsoon depressions and mid-tropospheric cyclones. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 89, 7997, https://doi.org/10.1007/BF02841521.

    • Search Google Scholar
    • Export Citation
  • Grigoriev, S., S. Gulev, and O. Zolina, 2000: Innovative software facilitates cyclone tracking and analysis. Eos, Trans. Amer. Geophys. Union, 81, 170, https://doi.org/10.1029/00EO00117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., O. Zolina, and Y. Reva, 2000: Synoptic and subsynoptic variability in the North Atlantic as revealed by the ocean weather station data. Tellus, 52 A, 323329, https://doi.org/10.3402/tellusa.v52i3.12268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964. Part II: Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, https://doi.org/10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K., A. Cobb, and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets? J. Climate, 30, 52435264, https://doi.org/10.1175/JCLI-D-16-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 20122037, https://doi.org/10.1175/1520-0493(2003)131<2012:ACORRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, https://doi.org/10.1175/2009MWR2760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2008: On the instability of the African easterly jet and the generation of African waves: Reversals of the potential vorticity gradient. J. Atmos. Sci., 65, 21302151, https://doi.org/10.1175/2007JAS2552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., and J. K. Fletcher, 2019: The relationship between Indian monsoon rainfall and low-pressure systems. Climate Dyn., 53, 18591871, https://doi.org/10.1007/s00382-019-04744-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. Turner, P. Innes, D. Parker, and R. Levine, 2016: On the structure and dynamics of Indian monsoon depressions. Mon. Wea. Rev., 144, 33913416, https://doi.org/10.1175/MWR-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J., and W. Boos, 2015: A global climatology of monsoon low-pressure systems. Quart. J. Roy. Meteor. Soc., 141, 10491064, https://doi.org/10.1002/qj.2447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M., and C. Thorncroft, 2013: Regional differences in the kinematic and thermodynamic structure of African easterly waves. Quart. J. Roy. Meteor. Soc., 139, 15981614, https://doi.org/10.1002/qj.2047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, M. A., 1995: The cold-core temperature structure in a tropical easterly wave. J. Atmos. Sci., 52, 11681177, https://doi.org/10.1175/1520-0469(1995)052<1168:TCCTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., and R. Hawkins, 1970: Mid-tropospheric cyclones of the southwest monsoon. J. Appl. Meteor., 9, 442458, https://doi.org/10.1175/1520-0450(1970)009<0442:MTCOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., and H. Bhalme, 1976: Oscillations of a monsoon system. Part I: Observational aspects. J. Atmos. Sci., 33, 19371954, https://doi.org/10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. Michael Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, https://doi.org/10.1002/qj.49712353807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., 1996: Intense extratropical Northern Hemisphere winter cyclone events: 1899–1991. J. Geophys. Res., 101, 21 31921 325, https://doi.org/10.1029/96JD01653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M., 1983: A moist baroclinic model for monsoonal mid-tropospheric cyclogenesis. J. Atmos. Sci., 40, 11541162, https://doi.org/10.1175/1520-0469(1983)040<1154:AMBMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manning, D. M., and R. E. Hart, 2007: Evolution of North Atlantic ERA40 tropical cyclone representation. Geophys. Res. Lett., 34, L05705, https://doi.org/10.1029/2006GL028266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, https://doi.org/10.1175/JCLI3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, F., and R. Keshavamurty, 1968: Structure of an Arabian Sea Summer Monsoon System. International Indian Ocean Expedition, Meteor. Monogr., No. 1, University of Hawaii Press, https://doi.org/10.1515/9780824885366.

    • Crossref
    • Export Citation
  • Mohr, K. I., 2004: Interannual, monthly, and regional variability in the wet season diurnal cycle of precipitation in sub-Saharan Africa. J. Climate, 17, 24412453, https://doi.org/10.1175/1520-0442(2004)017<2441:IMARVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooley, D., 1973: Some aspects of Indian monsoon depressions and the associated rainfall. Mon. Wea. Rev., 101, 271280, https://doi.org/10.1175/1520-0493(1973)101<0271:SAOIMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murthy, V. S., and W. R. Boos, 2019: Understanding the vertical structure of potential vorticity in tropical depressions. Quart. J. Roy. Meteor. Soc., 145, 19681991, https://doi.org/10.1002/qj.3539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nanjundiah, R. S., J. Srinivasan, and S. Gadgil, 1992: Intraseasonal variation of the Indian summer monsoon. J. Meteor. Soc. Japan, 70, 529550, https://doi.org/10.2151/jmsj1965.70.1B_529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S., and J. Grist, 2003: The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. J. Climate, 16, 10131030, https://doi.org/10.1175/1520-0442(2003)016<1013:TSEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phadtare, J., 2018: Role of Eastern Ghats orography and cold pool in an extreme rainfall event over Chennai on 1 December 2015. Mon. Wea. Rev., 146, 943965, https://doi.org/10.1175/MWR-D-16-0473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen, V., S. Sandeep, and R. Ajayamohan, 2015: On the relationship between mean monsoon precipitation and low pressure systems in climate model simulations. J. Climate, 28, 53055324, https://doi.org/10.1175/JCLI-D-14-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., C. Unnikrishnan, J. Bhate, K. Niranjan Kumar, and P. Sreekala, 2012: Northeast monsoon over India: Variability and prediction. Meteor. Appl., 19, 226236, https://doi.org/10.1002/met.1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1964: Some preliminary research results from the International Meteorological Centre. Proc. WMO Symp. on Tropical Meteorology, Wellington, New Zealand, New Zealand Meteorological Service, 403–408.

  • Ramage, C. S., 1966: The summer atmospheric circulation over the Arabian Sea. J. Atmos. Sci., 23, 144150, https://doi.org/10.1175/1520-0469(1966)023<0144:TSACOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1971: Monsoon Meteorology. International Geophysics Series, Vol. 15, Academic Press, 296 pp.

  • Raymond, D., C. Lopez-Carrillo, and L. Cavazos, 1998: Case-studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 20052034, https://doi.org/10.1002/qj.49712455011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D., S. Gjorgjievska, S. Sessions, and Ž. Fuchs, 2014: Tropical cyclogenesis and mid-level vorticity. Aust. Meteor. Oceanogr. J., 64, 1125, https://doi.org/10.22499/2.6401.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, https://doi.org/10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Memo. NASA/TM-2008-104606, Vol. 27, 97 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.

  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O., and A. Aiyyer, 2020: The potential vorticity structure and dynamics of African easterly waves. J. Atmos. Sci., 77, 871890, https://doi.org/10.1175/JAS-D-19-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O., A. Aiyyer, and J. Dylan White, 2020: African easterly wave dynamics in convection-permitting simulations: Rotational stratiform instability as a conceptual model. J. Adv. Model. Earth Syst., 12, e2019MS001706, https://doi.org/10.1029/2019MS001706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., N. Lin, D. Chavas, M. Oppenheimer, and A. Brammer, 2017: Evaluating outer tropical cyclone size in reanalysis datasets using QuikSCAT data. J. Climate, 30, 87458762, https://doi.org/10.1175/JCLI-D-17-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L., 1986: The three-dimensional structure of synoptic-scale disturbances over the tropical Atlantic. Mon. Wea. Rev., 114, 18761891, https://doi.org/10.1175/1520-0493(1986)114<1876:TTDSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, https://doi.org/10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., M. Garstang, E. J. Zipser, and G. A. Dean, 1967: A study of a non-deepening tropical disturbance. J. Appl. Meteor., 6, 237254, https://doi.org/10.1175/1520-0450(1967)006<0237:ASOAND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122, 22392256, https://doi.org/10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, P., C. Gnanaseelan, and J. Chowdary, 2017: North-east monsoon rainfall extremes over the southern peninsular India and their association with El Niño. Dyn. Atmos. Oceans, 80, 111, https://doi.org/10.1016/j.dynatmoce.2017.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sørland, S. L., and A. Sorteberg, 2015: The dynamic and thermodynamic structure of monsoon low-pressure systems during extreme rainfall events. Tellus, 67A, 27039, https://doi.org/10.3402/tellusa.v67.27039.

    • Search Google Scholar
    • Export Citation
  • Spengler, T., and R. K. Smith, 2008: The dynamics of heat lows over flat terrain. Quart. J. Roy. Meteor. Soc., 134, 21572172, https://doi.org/10.1002/qj.342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and B. Hoskins, 1994: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982, https://doi.org/10.1002/qj.49712051809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., N. M. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, https://doi.org/10.1175/2008JAS2575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., J. R. Holton, and P. J. Webster, 1999: The influence of cross-equatorial pressure gradients on the location of near-equatorial convection. Quart. J. Roy. Meteor. Soc., 125, 11071127, https://doi.org/10.1002/qj.1999.49712555603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vishnu, S., W. Boos, P. Ulrich, and T. O’Brien, 2020: Assessing historical variability of South Asian monsoon lows and depressions with an optimized tracking algorithm. J. Geophys. Res. Atmos., 125, e2020JD032977, https://doi.org/10.1029/2020JD032977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and H. Jiang, 2019: A 13-year global climatology of tropical cyclone warm-core structures from AIRS data. Mon. Wea. Rev., 147, 773790, https://doi.org/10.1175/MWR-D-18-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widlansky, M. J., P. J. Webster, and C. D. Hoyos, 2011: On the location and orientation of the South Pacific convergence zone. Climate Dyn., 36, 561578, https://doi.org/10.1007/s00382-010-0871-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 374 0 0
Full Text Views 1051 402 37
PDF Downloads 962 344 38