• Alpert, P., and T. Sholokhman, 2011: Factor Separation in the Atmosphere: Applications and Future Prospects. Cambridge University Press, 292 pp.

  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487490, https://doi.org/10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at the oceanic mesoscale. Oceanography, 23, 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 16581680, https://doi.org/10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, https://doi.org/10.1002/joc.1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 2004: Seasonal march of the East Asian summer monsoon. The East Asian Monsoon, C.-P. Chang, Ed., World Scientific, 3–5, https://doi.org/10.1142/9789812701411_0001.

    • Crossref
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and G. Chen, 2018: Heavy rainfall associated with double low-level jets over southern China. Part I: Ensemble-based analysis. Mon. Wea. Rev., 146, 38273844, https://doi.org/10.1175/MWR-D-18-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and G. Chen, 2019a: Heavy rainfall associated with double low-level jets over southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543565, https://doi.org/10.1175/MWR-D-18-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and G. Chen, 2019b: Climatology of low-level jets and their impact on rainfall over southern China during early-summer rainy season. J. Climate, 32, 88138833, https://doi.org/10.1175/JCLI-D-19-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., G. Chen, B. Han, L. Bai, and M. Li, 2020: Convection initiation and growth at the coast of South China. Part II: Effects of the terrain, coastline, and cold pools. Mon. Wea. Rev., 148, 38713892, https://doi.org/10.1175/MWR-D-20-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955966, https://doi.org/10.1175/BAMS-85-7-955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., and S.-S. Lee, 2007: On the interannual variability of the Bonin high associated with the East Asian summer monsoon rain. Climate Dyn., 28, 6783, https://doi.org/10.1007/s00382-006-0169-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018: Flash flood verification: Pondering precipitation proxies. J. Hydrometeor., 19, 17531776, https://doi.org/10.1175/JHM-D-18-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hewitson, B. C., and R. G. Crane, 2005: Gridded area-averaged daily precipitation via conditional interpolation. J. Climate, 18, 4157, https://doi.org/10.1175/JCLI3246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, K., and F. Sakaida, 2016: Global daily high-resolution satellite-based foundation sea surface temperature dataset: Development and validation against two definitions of foundation SST. Remote Sens., 8, 962, https://doi.org/10.3390/rs8110962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr., 2019: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, 17.1–17.54, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Crossref
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 28, 238 pp.

  • Jang, S.-M., D.-I. Lee, J.-H. Jeong, S.-H. Park, S. Shimizu, H. Uyeda, and Y.-S. Suh, 2014: Radar reflectivity and wind fields analysis by using two X-band Doppler radars at Okinawa, Japan from 11 to 12 June 2007. Meteor. Appl., 21, 898909, https://doi.org/10.1002/met.1427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus, M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF Model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060, https://doi.org/10.1175/WAF888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, H.-G., J.-B. Ahn, J. Lee, K.-M. Shim, and M.-P. Jung, 2020: Improvement of daily precipitation estimations using PRISM with inverse-distance weighting. Theor. Appl. Climatol., 139, 923934, https://doi.org/10.1007/s00704-019-03012-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., D.-I. Lee, C.-C. Wang, S.-M. Jang, S.-H. Park, and S.-A. Jung, 2014: Structure and evolution of line-shaped convective systems associated with Changma front during GRL PHONE-09: 6 July 2009 case. Meteor. Appl., 21, 786794, https://doi.org/10.1002/met.1418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., D.-I. Lee, and C.-C. Wang, 2016a: Impact of the cold pool on mesoscale convective system–produced extreme rainfall over southeastern South Korea: 7 July 2009. Mon. Wea. Rev., 144, 39854006, https://doi.org/10.1175/MWR-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., D.-I. Lee, C.-C. Wang, and I.-S. Han, 2016b: Characteristics of mesoscale-convective-system-produced extreme rainfall over southeastern South Korea: 7 July 2009. Nat. Hazards Earth Syst. Sci., 16, 927939, https://doi.org/10.5194/nhess-16-927-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J. I., and R. Park, 2013: A study of the effects of SST deviations on heavy snowfall over the Yellow Sea (in Korea). Atmosphere, 23, 161169, https://doi.org/10.14191/Atmos.2013.23.2.161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J. I., R. J. Park, and Y.-K. Cho, 2014: Effect of sea surface temperature errors on snowfall in WRF: A case study of a heavy snowfall event in Korea in December 2012. Terr. Atmos. Oceanic Sci., 25, 827, https://doi.org/10.3319/TAO.2014.08.15.01(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Y. Luo, D.-L. Zhang, and M. Wu, 2020: Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River Delta. J. Climate, 33, 58095826, https://doi.org/10.1175/JCLI-D-19-0884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanada, S., H. Aiki, K. Tsuboki, and I. Takayabu, 2021: Future changes of a slow-moving intense typhoon with global warming: A case study using a regional 1-km-mesh atmosphere–ocean coupled model. SOLA, 17A, 1420, https://doi.org/10.2151/sola.17A-003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, T., 2020: Quasi-stationary band-shaped precipitation systems, named “senjo-kousuitai”, causing localized heavy rainfall in Japan. J. Meteor. Soc. Japan, 98, 485509, https://doi.org/10.2151/jmsj.2020-029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ke, C.-Y., K.-S. Chung, T.-C. Chen Wang, and Y.-C. Liou, 2019: Analysis of heavy rainfall and barrier-jet evolution during Mei-Yu season using multiple Doppler radar retrievals: A case study on 11 June 2012. Tellus, 71A, 1571369, https://doi.org/10.1080/16000870.2019.1571369.

    • Search Google Scholar
    • Export Citation
  • Kim, T., S.-H. Choo, J.-H. Moon, and P.-H. Chang, 2017: Contribution of tropical cyclones to abnormal sea surface temperature warming in the Yellow Sea in December 2004. Dyn. Atmos. Oceans, 80, 97109, https://doi.org/10.1016/j.dynatmoce.2017.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1976: Heat balance of the China Sea during the air mass transformation experiment. J. Meteor. Soc. Japan, 54, 382398, https://doi.org/10.2151/jmsj1965.54.6_382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., T. Sakurai, and T. Kuragano, 2006: Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in-situ observations (in Japanese). Wea. Service Bull., 73, S1S18.

    • Search Google Scholar
    • Export Citation
  • Lee, K. O., H. Uyeda, S. Shimizu, and D. I. Lee, 2012: Dual-Doppler radar analysis of the enhancement of a precipitation system on the northern side of Mt. Halla, Jeju Island, Korea on 6 July 2007. Atmos. Res., 118, 133152, https://doi.org/10.1016/j.atmosres.2012.06.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-T., D.-I. Lee, C.-H. You, H. Uyeda, Y.-C. Liou, and I.-S. Han, 2014: Dual-Doppler radar analysis of a near-shore line-shaped convective system on 27 July 2011, Korea: A case study. Tellus, 66A, 23453, https://doi.org/10.3402/tellusa.v66.23453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-T., D.-I. Lee, S. Shimizu, and C.-H. You, 2019: Analysis of determinants for an enhanced and long-lasting coastal convective system by means of a case study (26 July 2011). Adv. Atmos. Sci., 36, 13271339, https://doi.org/10.1007/s00376-019-9025-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., Y. Luo, D.-L. Zhang, M. Chen, C. Wu, J. Yin, and R. Ma, 2020: Analysis of a record-breaking rainfall event associated with a monsoon coastal megacity of South China using multisource data. IEEE Trans. Geosci. Remote Sens., https://doi.org/10.1109/TGRS.2020.3029831, in press.

    • Search Google Scholar
    • Export Citation
  • Li, X., Y. Luo, and Z. Guan, 2014: The persistent heavy rainfall over Southern China in June 2010: Evolution of synoptic systems and the effects of the Tibetan Plateau heating. J. Meteor. Res., 28, 540560, https://doi.org/10.1007/s13351-014-3284-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Atmos. Sci., 69, 29832994, https://doi.org/10.1175/JAS-D-11-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Luo, Y. Du, and J. C. L. Chan, 2020: Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J. Meteor. Soc. Japan, 98, 213233, https://doi.org/10.2151/jmsj.2020-012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., J. Fan, J.-H. Jeong, Y. Zhang, C. R. Homeyer, and J. Wang, 2021: Urbanization-induced land and aerosol impacts on storm propagation and hail characteristics. J. Atmos. Sci., 78, 925947, https://doi.org/10.1175/JAS-D-20-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Y. Luo, Z. Guan, and D.-L. Zhang, 2018: An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res. Atmos., 123, 92569278, https://doi.org/10.1029/2018JD028418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Y. Luo, L. Huang, D.-L. Zhang, and Z. Guan, 2020: Roles of double low-level jets in the generation of coexisting inland and coastal heavy rainfall over south China during the presummer rainy season. J. Geophys. Res. Atmos., 125, e2020JD032890, https://doi.org/10.1029/2020JD032890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J., M. Tiedtke, and J. Geleyn, 1982: A short history of the PBL parameterization at ECMWF. Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–80.

  • Luo, Y., and Y. Chen, 2015: Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J. Geophys. Res. Atmos., 120, 10 59310 618, https://doi.org/10.1002/2015JD023584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a mei-yu front in East China. Mon. Wea. Rev., 142, 203221, https://doi.org/10.1175/MWR-D-13-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., M. Wu, F. Ren, J. Li, and W.-K. Wong, 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 87038719, https://doi.org/10.1175/JCLI-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, W., J. Li, A. Wang, and R. Q. Feng, 2005: Effects of condensation heating and surface fluxes on the development of a South China mesoscale convective system (MCS). J. Trop. Meteor., 11, 144152.

    • Search Google Scholar
    • Export Citation
  • Min, K.-S, K. Tsuboki, K. Yoshioka, Y. Moroda, and S. Kanada, 2021: Formation mechanism of a stationary line-shaped precipitation system in the Kinki District, Japan—Case study on 1 September 2015 event. J. Meteor. Soc. Japan, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., M. Nonaka, H. Nakamura, and A. Kuwano-Yoshida, 2012: A striking early-summer event of a convective rainband persistent along the warm Kuroshio in the East China Sea. Tellus, 64, 18962, https://doi.org/10.3402/tellusa.v64i0.18962.

    • Search Google Scholar
    • Export Citation
  • Moroda, Y., K. Tsuboki, S. Satoh, K. Nakagawa, T. Ushio, and S. Shimizu, 2021: Structure and evolution of precipitation cores in an isolated convective storm observed by phased array weather radar. J. Meteor. Soc. JapanI, 99, 765784, https://doi.org/10.2151/jmsj.2021-038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moteki, Q., and A. Manda, 2013: Seasonal migration of the Baiu Frontal Zone over the East China Sea: Sea surface temperature effect. SOLA, 9, 1922, https://doi.org/10.2151/sola.2013-005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud. J. Meteor. Soc. Japan, 68, 107128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., T. L. Clark, and W. D. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan. J. Meteor. Soc. Japan, 72, 4362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Park, R. S., Y.-K. Cho, B.-J. Choi, and C. H. Song, 2011: Implications of sea surface temperature deviations in the prediction of wind and precipitable water over the Yellow Sea. J. Geophys. Res., 116, D17106, https://doi.org/10.1029/2011JD016191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, R., C. A. Doswell, and C. Ramis, 2000: Mesoscale numerical study of two cases of long-lived quasi-stationary convective systems over eastern Spain. Mon. Wea. Rev., 128, 37313751, https://doi.org/10.1175/1520-0493(2001)129<3731:MNSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, https://doi.org/10.1175/MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakurai, T., Y. Kurihara, and T. Kuragano, 2005: Merged satellite and in-situ data global daily SST. Proc. 2005 IEEE Int. Conf. on Geoscience Remote Sensing. Symp. (IGARSS’05), Seoul, South Korea, IEEE, 2606–2608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, T. Asai, and M. Inatsu, 2012: Influence of the Kuroshio in the East China Sea on the early summer (baiu) rain. J. Climate, 25, 66276645, https://doi.org/10.1175/JCLI-D-11-00727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., and Coauthors, 2016: Influence of the Kuroshio on mesoscale convective systems in the baiu frontal zone over the East China Sea. Mon. Wea. Rev., 144, 10171033, https://doi.org/10.1175/MWR-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2017: Heavy rainfall and flash flooding. Nat. Hazard Sci ., https://doi.org/10.1093/acrefore/9780199389407.013.132.

    • Crossref
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, https://doi.org/10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J.-H. Son, and J.-Y. Lee, 2011: A new look at Changma (in Korea). Atmosphere, 21, 109121.

  • Shimizu, S., K. Iwanami, R. Kato, N. Sakurai, T. Maesaka, K. Kieda, Y. Shusse, and S. Suzuki, 2019: Assimilation impact of high-temporal-resolution volume scans on quantitative precipitation forecasts in a severe storm: Evidence from nudging data assimilation experiments with a thermodynamic retrieval method. Quart. J. Roy. Meteor. Soc., 145, 21392160, https://doi.org/https://doi.org/10.1002/qj.3548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, S. I. Gutman, and S. Sahm, 2007: Short-range forecast impact from assimilation of GPS-IPW observations into the Rapid Update Cycle. Mon. Wea. Rev., 135, 29142930, https://doi.org/10.1175/MWR3436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, U., and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 21072115, https://doi.org/10.1175/1520-0469(1993)050<2107:FSINS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., F. M. Ralph, F. E. Barthold, D. W. Reynolds, and D. R. Novak, 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, https://doi.org/10.1175/WAF-D-13-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, S.-L., Y.-C. Liou, S.-F. Chang, and J. Sun, 2020: The heavy rainfall mechanism revealed by a terrain-resolving 4DVar data assimilation system—A case study. Mon. Wea. Rev., 148, 23072330, https://doi.org/10.1175/MWR-D-19-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toy, M. D., and R. H. Johnson, 2014: The influence of an SST front on a heavy rainfall event over coastal Taiwan during TiMREX. J. Atmos. Sci., 71, 32233249, https://doi.org/10.1175/JAS-D-13-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., and A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, H. P. Zima et al., Eds., Springer, 243–259, https://doi.org/10.1007/3-540-47847-7_21.

    • Crossref
    • Export Citation
  • Tsuboki, K., and A. Sakakibara, 2007: Numerical Prediction of High-Impact Weather Systems: The Textbook for Seventeenth IHP Training Course 2007. HyARC, Nagoya University, and UNESCO, 273 pp.

  • Tsuboki, K., and Y. Luo, 2021: High-resolution simulations of heavy rainfalls in association with monsoon systems and typhoons using cloud-resolving models. The Multiscale Global Monsoon System, C.-P. Chang et al., Eds., World Scientific, 113–131.

    • Crossref
    • Export Citation
  • Tsuguti, H., and T. Kato, 2014: Contributing factors of the heavy rainfall event at Amami-Oshima island, Japan, on 20 October 2010. J. Meteor. Soc. Japan, 92, 163183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703, https://doi.org/10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., G. T.-J. Chen, T.-C. Chen, and K. Tsuboki, 2005: A numerical study on the effects of Taiwan topography on a convective line during the mei-yu season. Mon. Wea. Rev., 133, 32173242, https://doi.org/10.1175/MWR3028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., B.-K. Chiou, G. T.-J. Chen, H.-C. Kuo, and C.-H. Liu, 2016: A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11–12 June 2012. Atmos. Chem. Phys., 16, 12 35912 382, https://doi.org/10.5194/acp-16-12359-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., F.-C. Chien, S. Paul, D.-I. Lee, and P.-Y. Chuang, 2017: An evaluation of WRF rainfall forecasts in Taiwan during three mei-yu seasons from 2008 to 2010. Wea. Forecasting, 32, 13291351, https://doi.org/10.1175/WAF-D-16-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., C.-C. Wu, T.-H. Yen, and Y. Luo, 2017: Synoptic analysis of extreme hourly precipitation in Taiwan during 2003–12. Mon. Wea. Rev., 145, 51235140, https://doi.org/10.1175/MWR-D-17-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, R., and D.-L. Zhang, 2019: An observational analysis of three extreme rainfall episodes of 19–20 July 2016 along the Taihang mountains in north China. Mon. Wea. Rev., 147, 41994220, https://doi.org/10.1175/MWR-D-18-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, https://doi.org/10.1175/BAMS-85-2-195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., M. Xu, S.-P. Xie, and Y. Wang, 2011: Deep atmospheric response to the spring Kuroshio over the East China Sea. J. Climate, 24, 49594972, https://doi.org/10.1175/JCLI-D-10-05034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., D.-L. Zhang, Y. Luo, and R. Ma, 2020: On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148, 955979, https://doi.org/10.1175/MWR-D-19-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and Y. Chen, 2011: Surface fluctuations associated with tropical cyclone rainbands observed near Taiwan during 2000–08. J. Atmos. Sci., 68, 15681585, https://doi.org/10.1175/2011JAS3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 638 534 10
Full Text Views 443 371 6
PDF Downloads 428 349 7

Influence of Sea Surface Temperature on a Mesoscale Convective System Producing Extreme Rainfall over the Yellow Sea

View More View Less
  • 1 aDepartment of Environmental Atmospheric Sciences, Pukyong National University, Busan, South Korea
  • | 2 bAtmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
Restricted access

Abstract

An extreme-rainfall-producing linear mesoscale convective system (MCS) occurred over the Yellow Sea, Korea, on 13 August 2012, producing 430 mm of rainfall in less than 12 h, causing devastating flash floods and landslides. To understand the causative processes underlying this event, we examined the linear MCS’s formation and development mechanisms using observations and cloud-resolving models. The organized linear MCS produced extreme rainfall at Gunsan in a favorable large-scale environment. The synoptic environment showed the stationary surface front elongating from China to Korea; a southwesterly low-level jet transported the warm, moist air from low latitudes toward the front. In the upper-level synoptic environment, the trough and entrance regions of the upper-level jet were north of the heavy rainfall, promoting the development of convection. The extreme rainfall over the Gunsan area resulted from the back-building mode of the MCS, in which new convective cells continued to pass over the same area while the entire convective system was nearly stationary. The sea surface temperature (SST) during the extreme rainfall events was abnormally 1°C higher than the 30-yr climatological mean, and a local warm pool (>28.5°C) existed where the convective cells were continuously initiated. Cloud-resolving models simulated the low-level convergence, and the latent heat flux was large in the local warm SST field. These induced MCS formation and development, contributing to a significant rainfall increase over the Yellow Sea. The terrain’s influence on the large rainfall amount in the area was also noted.

Kang’s current affiliation: Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan.

Jeong’s current affiliation: Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong-In Lee, leedi@pknu.ac.kr

Abstract

An extreme-rainfall-producing linear mesoscale convective system (MCS) occurred over the Yellow Sea, Korea, on 13 August 2012, producing 430 mm of rainfall in less than 12 h, causing devastating flash floods and landslides. To understand the causative processes underlying this event, we examined the linear MCS’s formation and development mechanisms using observations and cloud-resolving models. The organized linear MCS produced extreme rainfall at Gunsan in a favorable large-scale environment. The synoptic environment showed the stationary surface front elongating from China to Korea; a southwesterly low-level jet transported the warm, moist air from low latitudes toward the front. In the upper-level synoptic environment, the trough and entrance regions of the upper-level jet were north of the heavy rainfall, promoting the development of convection. The extreme rainfall over the Gunsan area resulted from the back-building mode of the MCS, in which new convective cells continued to pass over the same area while the entire convective system was nearly stationary. The sea surface temperature (SST) during the extreme rainfall events was abnormally 1°C higher than the 30-yr climatological mean, and a local warm pool (>28.5°C) existed where the convective cells were continuously initiated. Cloud-resolving models simulated the low-level convergence, and the latent heat flux was large in the local warm SST field. These induced MCS formation and development, contributing to a significant rainfall increase over the Yellow Sea. The terrain’s influence on the large rainfall amount in the area was also noted.

Kang’s current affiliation: Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan.

Jeong’s current affiliation: Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong-In Lee, leedi@pknu.ac.kr
Save