Modulation of Atmospheric Rivers by Mesoscale Frontal Waves and Latent Heating: Comparison of Two U.S. West Coast Events

Allison C. Michaelis aDepartment of Geographic and Atmospheric Sciences, Northern Illinois University, DeKalb, Illinois

Search for other papers by Allison C. Michaelis in
Current site
Google Scholar
PubMed
Close
,
Andrew C. Martin bDepartment of Geography, Portland State University, Portland, Oregon

Search for other papers by Andrew C. Martin in
Current site
Google Scholar
PubMed
Close
,
Meredith A. Fish cDepartment of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey
dRutgers Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Meredith A. Fish in
Current site
Google Scholar
PubMed
Close
,
Chad W. Hecht eCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Chad W. Hecht in
Current site
Google Scholar
PubMed
Close
, and
F. Martin Ralph eCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A complex and underexplored relationship exists between atmospheric rivers (ARs) and mesoscale frontal waves (MFWs). The present study further explores and quantifies the importance of diabatic processes to MFW development and the AR–MFW interaction by simulating two ARs impacting Northern California’s flood-vulnerable Russian River watershed using the Model for Prediction Across Scales-Atmosphere (MPAS-A) with and without the effects of latent heating. Despite the storms’ contrasting characteristics, diabatic processes within the system were critical to the development of MFWs, the timing and magnitude of integrated vapor transport (IVT), and precipitation impacts over the Russian River watershed in both cases. Low-altitude circulations and lower-tropospheric moisture content in and around the MFWs are considerably reduced without latent heating, contributing to a decrease in moisture transport, moisture convergence, and IVT. Differences in IVT are not consistently dynamic (i.e., wind-driven) or thermodynamic (i.e., moisture-driven), but instead vary by case and by time throughout each event. For one event, AR conditions over the watershed persisted for 6 h less and the peak IVT occurred 6 h earlier and was reduced by ~17%; weaker orographic and dynamic precipitation forcings reduced precipitation totals by ~64%. Similarly, turning off latent heating shortened the second event by 24 h and reduced precipitation totals by ~49%; the maximum IVT over the watershed was weakened by ~42% and delayed by 18 h. Thus, sufficient representation of diabatic processes, and by inference, water vapor initial conditions, is critical for resolving MFWs, their feedbacks on AR evolution, and associated precipitation forecasts on watershed scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allison C. Michaelis, amichaelis@niu.edu

Abstract

A complex and underexplored relationship exists between atmospheric rivers (ARs) and mesoscale frontal waves (MFWs). The present study further explores and quantifies the importance of diabatic processes to MFW development and the AR–MFW interaction by simulating two ARs impacting Northern California’s flood-vulnerable Russian River watershed using the Model for Prediction Across Scales-Atmosphere (MPAS-A) with and without the effects of latent heating. Despite the storms’ contrasting characteristics, diabatic processes within the system were critical to the development of MFWs, the timing and magnitude of integrated vapor transport (IVT), and precipitation impacts over the Russian River watershed in both cases. Low-altitude circulations and lower-tropospheric moisture content in and around the MFWs are considerably reduced without latent heating, contributing to a decrease in moisture transport, moisture convergence, and IVT. Differences in IVT are not consistently dynamic (i.e., wind-driven) or thermodynamic (i.e., moisture-driven), but instead vary by case and by time throughout each event. For one event, AR conditions over the watershed persisted for 6 h less and the peak IVT occurred 6 h earlier and was reduced by ~17%; weaker orographic and dynamic precipitation forcings reduced precipitation totals by ~64%. Similarly, turning off latent heating shortened the second event by 24 h and reduced precipitation totals by ~49%; the maximum IVT over the watershed was weakened by ~42% and delayed by 18 h. Thus, sufficient representation of diabatic processes, and by inference, water vapor initial conditions, is critical for resolving MFWs, their feedbacks on AR evolution, and associated precipitation forecasts on watershed scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allison C. Michaelis, amichaelis@niu.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.63 MB)
Save
  • Adusumilli, S., M. A. Fish, H. A. Fricker, and B. Medley, 2021: Atmospheric river precipitation contributed to rapid increases in surface height of the West Antarctic Ice Sheet in 2019. Geophys. Res. Lett., 48, e2020GL091 076, https://doi.org/10.1029/2020GL091076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., and H. C. Davies, 1996: PV morphology of a frontal-wave development. Meteor. Atmos. Phys., 58, 2140, https://doi.org/10.1007/BF01027554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baehr, C., B. Pouponneau, F. Ayrault, and A. Joly, 1999: Dynamical characterization of the FASTEX cyclogenesis cases. Quart. J. Roy. Meteor. Soc., 125, 34693494, https://doi.org/10.1002/qj.49712556117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophys. Publ., 3, 118.

    • Search Google Scholar
    • Export Citation
  • Blier, W., and R. M. Wakimoto, 1995: Observations of the early evolution of an explosive oceanic cyclone during ERICA IOP 5. Part I: Synoptic overview and mesoscale frontal structure. Mon. Wea. Rev., 123, 12881310, https://doi.org/10.1175/1520-0493(1995)123<1288:OOTEEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., A. Protat, and Y. Lemaitre, 1999: Mesoscale dynamics of a deepening secondary cyclone in FASTEX IOP16: Three-dimensional structure retrieved from dropsonde data. Quart. J. Roy. Meteor. Soc., 125, 35353562, https://doi.org/10.1002/qj.49712556120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. W. Pardoe, 1973: Structure of low-level jet streams ahead of mid-latitude cold fronts. Quart. J. Roy. Meteor. Soc., 99, 619638, https://doi.org/10.1002/qj.49709942204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzzi, A., N. Tartaglione, and P. Malguzzi, 1998: Numerical simulations of the 1994 Piedmont flood: Role of orography and moist processes. Mon. Wea. Rev., 126, 23692383, https://doi.org/10.1175/1520-0493(1998)126<2369:NSOTPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, F., J. M. Cordeira, C. W. Hecht, J. R. Norris, A. Michaelis, R. Demirdjian, and F. M. Ralph, 2020: GPM satellite radar observations of precipitation mechanisms in atmospheric rivers. Mon. Wea. Rev., 148, 14491463, https://doi.org/10.1175/MWR-D-19-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J., and A. J. Thorpe, 1999: Frontogenesis and the development of secondary wave cyclones in FASTEX. Quart. J. Roy. Meteor. Soc., 125, 925940, https://doi.org/10.1002/qj.49712555509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. W., T. R. Holt, and K. D. Sashegyi, 1996: A numerical study of the ERICA IOP 4 marine cyclone. Mon. Wea. Rev., 124, 2746, https://doi.org/10.1175/1520-0493(1996)124<0027:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, https://doi.org/10.1175/MWR-D-13-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2006: Life-cycle simulations of shallow frontal waves and the impact of deformation strain. Quart. J. Roy. Meteor. Soc., 132, 21712190, https://doi.org/10.1256/qj.05.238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 24092428, https://doi.org/10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demaria, E. M. C., F. Dominguez, H. Hu, G. von Glinski, M. Robles, J. Skindlov, and J. Walter, 2017: Observed hydrologic impacts of landfalling atmospheric rivers in the Salt and Verde River basins of Arizona, United States. Water Resour. Res., 53, 10 02510 042, https://doi.org/10.1002/2017WR020778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demirdjian, R., J. D. Doyle, C. A. Reynolds, J. R. Norris, A. C. Michaelis, and F. M. Ralph, 2020a: A case study of the physical processes associated with the atmospheric river initial-condition sensitivity from an adjoint model. J. Atmos. Sci., 77, 691709, https://doi.org/10.1175/JAS-D-19-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demirdjian, R., J. R. Norris, A. Martin, and F. M. Ralph, 2020b: Dropsonde observations of the ageostrophy within the pre-cold-frontal low-level jet associated with atmospheric rivers. Mon. Wea. Rev., 148, 13891406, https://doi.org/10.1175/MWR-D-19-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Q., V. Faber, and M. Gunzburger, 1999: Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev., 41, 637676, https://doi.org/10.1137/S0036144599352836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eiras-Barca, J., S. Brands, and G. Miguez-Macho, 2016: Seasonal variations in North Atlantic atmospheric river activity and associations with anomalous precipitation over the Iberian Atlantic margin. J. Geophys. Res., 121, 931948, https://doi.org/10.1002/2015JD023379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fehlmann, R., and H. C. Davies, 1999: Role of salient potential-vorticity elements in an event of frontal-wave cyclogenesis. Quart. J. Roy. Meteor. Soc., 125, 18011824, https://doi.org/10.1002/qj.49712555716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fish, M. A., A. M. Wilson, and F. M. Ralph, 2019: Atmospheric river families: Definition and associated synoptic conditions. J. Hydrometeor., 20, 20912108, https://doi.org/10.1175/JHM-D-18-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., M. Tsukernik, K. Claes, F. M. Ralph, W. D. Neff, and N. P. M. Van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41, 61996206, https://doi.org/10.1002/2014GL060881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, C. W., and J. M. Cordeira, 2017: Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over North Coastal California. Geophys. Res. Lett., 44, 90489058, https://doi.org/10.1002/2017GL074179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hewson, T. D., 2009: Diminutive frontal waves—A link between fronts and cyclones. J. Atmos. Sci., 66, 116132, https://doi.org/10.1175/2008JAS2719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., Y. N. Takayabu, M. Kato, and S. Arakane, 2016: Roles of an atmospheric river and a cutoff low in the extreme precipitation event in Hiroshima on 19 August 2014. Mon. Wea. Rev., 144, 11451160, https://doi.org/10.1175/MWR-D-15-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., and R. R. Braham Jr., 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, https://doi.org/10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, A., and A. J. Thorpe, 1990: Frontal instability generated by tropospheric potential vorticity anomalies. Quart. J. Roy. Meteor. Soc., 116, 525560, https://doi.org/10.1002/qj.49711649302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, A., and Coauthors, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78, 19171940, https://doi.org/10.1175/1520-0477(1997)078<1917:TFAAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., W. Mei, and S. Xie, 2017: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan, 95, 411431, https://doi.org/10.2151/jmsj.2017-027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingston, D. G., D. A. Lavers, and D. M. Hannah, 2016: Floods in the Southern Alps of New Zealand: The importance of atmospheric rivers. Hydrol. Processes, 30, 50635070, https://doi.org/10.1002/hyp.10982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, https://doi.org/10.1175/2009JCLI3333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, https://doi.org/10.1175/JCLI-D-12-00401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. J. Bracegirdle, and M. Zahn, 2016: Re-examining the roles of surface heat flux and latent heat release in a “hurricane-like” polar low over the Barents Sea. J. Geophys. Res. Atmos., 121, 78537867, https://doi.org/10.1002/2015JD024633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y., J. R. Gyakum, and Z. Guo, 1995: A case of rapid continental mesoscale cyclogenesis. Part I: Model sensitivity experiments. Mon. Wea. Rev., 123, 970997, https://doi.org/10.1175/1520-0493(1995)123<0970:ACORCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974, https://doi.org/10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the Northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700, https://doi.org/10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., D. Keyser, and L. F. Bosart, 1997: A characteristic life cycle of upper tropospheric cyclogenetic precursors during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA). Mon. Wea. Rev., 125, 27292758, https://doi.org/10.1175/1520-0493(1997)125<2729:ACLCOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013a: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, https://doi.org/10.1175/JCLI-D-13-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013b: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. M. Ralph, D. E. Waliser, A. Gershunov, and M. D. Dettinger, 2015: Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett., 42, 56175625, https://doi.org/10.1002/2015GL064672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Little, K., D. G. Kingston, N. J. Cullen, and P. B. Gibson, 2019: The role of atmospheric rivers for extreme ablation and snowfall events in the Southern Alps of New Zealand. Geophys. Res. Lett., 46, 27612771, https://doi.org/10.1029/2018GL081669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludwig, P., J. G. Pinto, S. A. Hoepp, A. H. Fink, and S. L. Gray, 2015: Secondary cyclogenesis along an occluded front leading to damaging wind gusts: Windstorm Kyrill, January 2007. Mon. Wea. Rev., 143, 14171437, https://doi.org/10.1175/MWR-D-14-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and Coauthors, 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malardel, S., A. Joly, F. Courbet, and P. Courtier, 1993: Nonlinear evolution of ordinary frontal waves induced by low-level potential vorticity anomalies. Quart. J. Roy. Meteor. Soc., 119, 681713, https://doi.org/10.1002/qj.49711951205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., G. M. Lackmann, and W. A. Robinson, 2015: Changes in U.S. East Coast cyclone dynamics with climate change. J. Climate, 28, 468484, https://doi.org/10.1175/JCLI-D-14-00418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., F. M. Ralph, R. Demirdjian, L. DeHaan, R. Weihs, J. Helly, D. Reynolds, and S. Iacobellis, 2018: Evaluation of atmospheric river predictions by the WRF Model using aircraft and regional mesonet observations of orographic precipitation and its forcing. J. Hydrometeor., 19, 10971113, https://doi.org/10.1175/JHM-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., F. M. Ralph, A. Wilson, L. DeHaan, and B. Kawzenuk, 2019: Rapid cyclogenesis from a mesoscale frontal wave on an atmospheric river: Impacts on forecast skill and predictability during atmospheric river landfall. J. Hydrometeor., 20, 17791794, https://doi.org/10.1175/JHM-D-18-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., J. Willison, G. M. Lackmann, and W. A. Robinson, 2017: Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo–global warming simulations. J. Climate, 30, 69056925, https://doi.org/10.1175/JCLI-D-16-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, https://doi.org/10.1175/MWR-D-11-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., A. B. White, D. J. Gottas, and P. J. Neiman, 2020: Extreme precipitation events in Northern California during winter 2016–17: Multiscale analysis and climatological perspective. Mon. Wea. Rev., 148, 10491074, https://doi.org/10.1175/MWR-D-19-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, D., D. Waliser, B. Guan, H. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos., 123, 68046821, https://doi.org/10.1029/2017JD028130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayak, M. A., and G. Villarini, 2017: A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States. Water Resour. Res., 53, 11441166, https://doi.org/10.1002/2016WR019033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, P. O. G. Persson, A. B. White, D. P. Jorgensen, and D. E. Kingsmill, 2004: Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in southern California: Observations during CALJET. Mon. Wea. Rev., 132, 242273, https://doi.org/10.1175/1520-0493(2004)132<0242:MOFAPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., A. B. White, F. M. Ralph, D. J. Gottas, and S. I. Gutman, 2009: A water vapour flux tool for precipitation forecasting. Proc. Inst. Civ. Eng. Water Manage., 162, 8394, https://doi.org/10.1680/wama.2009.162.2.83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. Hughes, K. M. Mahoney, J. M. Cordeira, and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, https://doi.org/10.1175/JHM-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., G. A. Wick, B. J. Moore, F. M. Ralph, J. R. Spackman, and B. Ward, 2014: An airborne study of an atmospheric river over the subtropical Pacific during WISPAR: Dropsonde budget-box diagnostics and precipitation impacts in Hawaii. Mon. Wea. Rev., 142, 31993223, https://doi.org/10.1175/MWR-D-13-00383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., B. J. Moore, A. B. White, G. A. Wick, J. Aikins, D. L. Jackson, J. R. Spackman, and F. M. Ralph, 2016: An airborne and ground-based study of a long-lived and intense atmospheric river with mesoscale frontal waves impacting California during CalWater-2014. Mon. Wea. Rev., 144, 11151144, https://doi.org/10.1175/MWR-D-15-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, https://doi.org/10.1175/JCLI-D-11-00665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., J. B. Klemp, and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF models using an idealized normal-mode baroclinic wave simulation. Mon. Wea. Rev., 142, 36143634, https://doi.org/10.1175/MWR-D-14-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 1998: Secondary frontal waves in the North Atlantic region: A dynamical perspective of current ideas. Quart. J. Roy. Meteor. Soc., 124, 829856, https://doi.org/10.1002/qj.49712454709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599, https://doi.org/10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.