The Impact of a Midlevel Dry Airflow Layer on Deep Convection in the Pre-Gabrielle (2013) Tropical Disturbance on 4–5 September

Charles N. Helms aDepartment of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York

Search for other papers by Charles N. Helms in
Current site
Google Scholar
PubMed
Close
and
Lance F. Bosart aDepartment of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 4–5 September 2013, a relatively shallow layer of northerly dry airflow was observed just west of the core deep convection associated with the low-level center of the pre-Gabrielle (2013) tropical disturbance. Shortly thereafter, the core deep convection of the disturbance collapsed after having persisted for well over 24 h. The present study provides an in-depth analysis of the interaction between this dry airflow layer and the pre-Gabrielle disturbance core deep convection using a combination of observations, reanalysis fields, and idealized simulations. Based on the analysis, we conclude that the dry airflow layer played an important role in the collapse of the core deep convection in the pre-Gabrielle disturbance. Furthermore, we found that the presence of storm-relative flow was critical to the inhibitive effects of the dry airflow layer on deep convection. The mechanism by which the dry airflow layer inhibited deep convection was found to be enhanced dry air entrainment.

Significance Statement

A persistent region of deep convection near the core of a tropical disturbance is critical to tropical cyclone formation. The sudden collapse of this deep convection is often poorly anticipated and can result in large forecast errors. Here we perform a careful analysis of observations of a tropical disturbance that experienced such a collapse in order to understand the roles of environmental moisture and wind variations in the sudden collapse of the convection. Our findings suggest that the collapse can be explained by the transport of dry air into this region of deep convection. These findings emphasize the importance of examining full profiles of moisture and wind when determining if a disturbance environment is favorable for tropical cyclone formation.

Helms’s current affiliations: NASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Corresponding author: Charles N. Helms, charles.n.helms@nasa.gov

Abstract

On 4–5 September 2013, a relatively shallow layer of northerly dry airflow was observed just west of the core deep convection associated with the low-level center of the pre-Gabrielle (2013) tropical disturbance. Shortly thereafter, the core deep convection of the disturbance collapsed after having persisted for well over 24 h. The present study provides an in-depth analysis of the interaction between this dry airflow layer and the pre-Gabrielle disturbance core deep convection using a combination of observations, reanalysis fields, and idealized simulations. Based on the analysis, we conclude that the dry airflow layer played an important role in the collapse of the core deep convection in the pre-Gabrielle disturbance. Furthermore, we found that the presence of storm-relative flow was critical to the inhibitive effects of the dry airflow layer on deep convection. The mechanism by which the dry airflow layer inhibited deep convection was found to be enhanced dry air entrainment.

Significance Statement

A persistent region of deep convection near the core of a tropical disturbance is critical to tropical cyclone formation. The sudden collapse of this deep convection is often poorly anticipated and can result in large forecast errors. Here we perform a careful analysis of observations of a tropical disturbance that experienced such a collapse in order to understand the roles of environmental moisture and wind variations in the sudden collapse of the convection. Our findings suggest that the collapse can be explained by the transport of dry air into this region of deep convection. These findings emphasize the importance of examining full profiles of moisture and wind when determining if a disturbance environment is favorable for tropical cyclone formation.

Helms’s current affiliations: NASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Corresponding author: Charles N. Helms, charles.n.helms@nasa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 71.15 KB)
Save
  • Alland, J. J., B. H. Tang, and K. L. Corbosiero, 2017: Effects of midlevel dry air on development of the axisymmetric tropical cyclone secondary circulation. J. Atmos. Sci., 74, 14551470, https://doi.org/10.1175/JAS-D-16-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., 2013: Tropical cyclone report, Tropical Storm Gabrielle (4–13 September 2013). Tech. Rep. AL072013, National Hurricane Center, 16 pp., www.nhc.noaa.gov/data/tcr/AL072013_Gabrielle.pdf.

  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effects of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130155, https://doi.org/10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, https://doi.org/10.1175/JAS-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2016: IFS Documentation CY41R2—Part II: Data assimilation. IFS Documentation CY41R2, ECMWF, 103 pp., https://doi.org/10.21957/vhe0zlxr8.

    • Crossref
    • Export Citation
  • Hannah, W. M., 2017: Entrainment versus dilution in tropical deep convection. J. Atmos. Sci., 74, 37253747, https://doi.org/10.1175/JAS-D-16-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helms, C. N., and R. E. Hart, 2015: The evolution of dropsonde-derived kinematic and thermodynamic structures in developing and nondeveloping Atlantic tropical convective systems. Mon. Wea. Rev., 143, 31093135, https://doi.org/10.1175/MWR-D-14-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, NOAA/NWS/NHC, 21 pp.

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juračić, A., and D. J. Raymond, 2016: The effects of moist entropy and moisture budgets on tropical cyclone development. J. Geophys. Res. Atmos., 121, 94589473, https://doi.org/10.1002/2016JD025065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., and R. K. Smith, 2013: A numerical study of rotating convection during tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 139, 12551269, https://doi.org/10.1002/qj.2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, https://doi.org/10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lajoie, F. A., and I. J. Butterworth, 1984: Oscillation of high-level cirrus and heavy precipitation around Australian region tropical cyclones. Mon. Wea. Rev., 112, 535544, https://doi.org/10.1175/1520-0493(1984)112<0535:OOHLCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., D. B. Weber, and C. A. Doswell, 2008: Parameterized mesoscale forcing mechanisms for inititating numerically simulated isolated multicellular convection. Mon. Wea. Rev., 136, 24082421, https://doi.org/10.1175/2007MWR2133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monette, S. A., C. S. Velden, K. S. Griffen, and C. M. Rozoff, 2012: Examining trends in satellite-detected tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. J. Appl. Meteor. Climatol., 51, 19171930, https://doi.org/10.1175/JAMC-D-11-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1983: Diurnal variations of satellite-measured TBB areal distribution and eye diameter of mature typhoons. J. Meteor. Soc. Japan, 61, 7790, https://doi.org/10.2151/jmsj1965.61.1_77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Nolan, D. S., and C. A. Mattocks, 2014: Development and evaluation of the second hurricane nature run using the joint OSSE nature run and the WRF model. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P91, https://ams.confex.com/ams/31Hurr/webprogram/Paper244751.html.

  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF model. J. Adv. Model. Earth Syst., 5, 382405, https://doi.org/10.1002/jame.20031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626, https://doi.org/10.1175/1520-0477-29.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1995: Regulation of moist convection over the West Pacific warm pool. J. Atmos. Sci., 52, 39453959, https://doi.org/10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridout, J. A., 2002: Sensitivity of tropical Pacific convection to dry layers at mid- to upper levels: Simulation and parameterization tests. J. Atmos. Sci., 59, 33623381, https://doi.org/10.1175/1520-0469(2002)059<3362:SOTPCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting system (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. A. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661, https://doi.org/10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459, https://doi.org/10.1175/2008JAS2597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., S. A. Braun, and C. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, https://doi.org/10.1175/2011JAS3648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., P. Schafer, D. Kirshbaum, and E. Regina, 2009: Orographic enhancement of precipitation inside Hurricane Dean. J. Hydrometeor., 10, 820831, https://doi.org/10.1175/2008JHM1057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanford, M. W., A. Varble, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, R. Potts, and A. Protat, 2017: A ubiquitous ice size bias in simulations of tropical deep convection. Atmos. Chem. Phys., 17, 95999621, https://doi.org/10.5194/acp-17-9599-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B. H., R. Rios-Berrios, J. J. Alland, J. D. Berman, and K. L. Corbosiero, 2016: Sensitivity of axisymmetric tropical cyclone spinup time to dry air aloft. J. Atmos. Sci., 73, 42694287, https://doi.org/10.1175/JAS-D-16-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., K. Young, and T. F. Hock, 2016: NCAR GPS dropsondes humidity dry bias. Tech. Note NCAR/TN-531+STR, NCAR/EOL, 8 pp., https://doi.org/10.5065/D6XS5SGX.

    • Crossref
    • Export Citation
  • Wang, S., and A. H. Sobel, 2012: Impact of imposed drying on deep convection in a cloud-resolving model. J. Geophys. Res., 117, D02112, https://doi.org/10.1029/2011JD016847.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, https://doi.org/10.1175/JAS-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., T. J. Dunkerton, and M. T. Montgomery, 2012: Application of the marsupial paradigm to tropical cyclone formation from northwestward-propagating disturbances. Mon. Wea. Rev., 140, 6676, https://doi.org/10.1175/2011MWR3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., and Z. Ruan, 2016: Diurnal variations of the areas and temperatures in tropical cyclone clouds. Quart. J. Roy. Meteor. Soc., 142, 27882796, https://doi.org/10.1002/qj.2868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, K., H. Vömel, T. Hock, and N. Potts, 2016: Hurricane and Severe Storm Sentinel (HS3) 2013 Global Hawk dropsonde data analysis summary. NCAR, 11 pp., https://data.eol.ucar.edu/datafile/nph-get/348.003/readme.V5.HS3-2013.GHdropsonde.pdf.

  • Zuidema, P., B. Mapes, J. Lin, C. Fairall, and G. Wick, 2006: The interaction of clouds and dry air in the eastern tropical Pacific. J. Climate, 19, 45314544, https://doi.org/10.1175/JCLI3836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 522 0 0
Full Text Views 1476 410 35
PDF Downloads 478 194 15