Forecast of Low Clouds over a Snow Surface in the Arctic Using the WRF Model

M. Hagman aDepartment of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by M. Hagman in
Current site
Google Scholar
PubMed
Close
,
G. Svensson aDepartment of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by G. Svensson in
Current site
Google Scholar
PubMed
Close
, and
W. M. Angevine bCIRES, University of Colorado Boulder, Boulder, Colorado
cNOAA/ESRL/CSD, Boulder, Colorado

Search for other papers by W. M. Angevine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Swedish Armed Forces configuration of the Weather Research and Forecasting (WRF) Model has problems in forecasting low clouds in stably stratified conditions when the ground is covered by snow. Reforecasts for January and February 2018, together with observations from Sodankylä in northern Finland, are analyzed to find the cause. The investigation is done iteratively between the single-column model (SCM), applied at Sodankylä, and the full 3D version. Our experiments show that the forecast error arises due to inadequate initialization of stratocumulus (Sc) clouds in WRF using the ECMWF global model, Integrated Forecasting System (IFS). By including bulk liquid water and bulk ice water content, from IFS in the initial profile, the downwelling longwave radiation increases and prevents the near-surface temperature from dropping abnormally. This, in turn, prevents artificial clouds from forming at the first model level. When no clouds are present in the IFS initial profile, the Sc clouds can be initialized using information from the observed vertical profiles. Generally, initialization of Sc clouds in WRF improves the forecast substantially.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Hagman, hackesailor@hotmail.com

Abstract

The Swedish Armed Forces configuration of the Weather Research and Forecasting (WRF) Model has problems in forecasting low clouds in stably stratified conditions when the ground is covered by snow. Reforecasts for January and February 2018, together with observations from Sodankylä in northern Finland, are analyzed to find the cause. The investigation is done iteratively between the single-column model (SCM), applied at Sodankylä, and the full 3D version. Our experiments show that the forecast error arises due to inadequate initialization of stratocumulus (Sc) clouds in WRF using the ECMWF global model, Integrated Forecasting System (IFS). By including bulk liquid water and bulk ice water content, from IFS in the initial profile, the downwelling longwave radiation increases and prevents the near-surface temperature from dropping abnormally. This, in turn, prevents artificial clouds from forming at the first model level. When no clouds are present in the IFS initial profile, the Sc clouds can be initialized using information from the observed vertical profiles. Generally, initialization of Sc clouds in WRF improves the forecast substantially.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Hagman, hackesailor@hotmail.com
Save
  • Angevine, W. M., J. Olson, J. Kenyon, W. I. Gustafson, S. Endo, K. Suselj, and D. D. Turner, 2018: Shallow cumulus in WRF parameterizations evaluated against LASSO large-eddy simulations. Mon. Wea. Rev., 146, 43034322, https://doi.org/10.1175/MWR-D-18-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arduini, G., G. Balsamo, E. Dutra, J. J. Day, I. Sandu, S. Boussetta, and T. Haiden, 2019: Impact of a multi-layer snow scheme on near-surface weather forecasts. J. Adv. Model. Earth Syst., 11, 46874710, https://doi.org/10.1029/2019MS001725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., P. Viterbo, A. Beijaars, B. van den Hurk, M. Hirschi, A. K. Betts, and K. Scipal, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, https://doi.org/10.1175/2008JHM1068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, R. N., H. G. Chipilski, and O. Martinez-Alvarado, 2020: Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales. Quart. J. Roy. Meteor. Soc., 146, 148, https://doi.org/10.1002/qj.3652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and Coauthors, 2017: The HARMONIE-AROME model configuration in the ALADIN-HIRLAM NWP system. Mon. Wea. Rev., 145, 19191935, https://doi.org/10.1175/MWR-D-16-0417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., and Coauthors, 2014: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157187, https://doi.org/10.1007/s10546-014-9919-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling and advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 17831807, https://doi.org/10.1002/qj.49712455002.

    • Search Google Scholar
    • Export Citation
  • Dybbroe, A., K. G. Karlsson, and A. Thoss, 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteor., 44, 3954, https://doi.org/10.1175/JAM-2188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 11911217, https://doi.org/10.1002/qj.3202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and W. M. Angevine, 2013: Ensemble data assimilation to characterize surface-layer errors in numerical weather prediction models. Mon. Wea. Rev., 141, 18041821, https://doi.org/10.1175/MWR-D-12-00280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häggmark, L., K. I. Ivarsson, S. Gollvik, and P. O. Olofsson, 2000: Mesan, an operational mesoscale analysis system. Tellus, 52A, 220, https://doi.org/10.3402/tellusa.v52i1.12250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, M., S. A. Braun, T. Matsui, and C. R. Williams, 2013: Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements. J. Geophys. Res., 118, 14011419, https://doi.org/10.1002/jgrd.50115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., G. Svensson, S. Basu, B. Beare, F. C. Bosveld, and J. Cuxart, 2012: Overview of the GEWEX Atmospheric Boundary Layer Study (GABLS). Proc. Working Diurnal Cycles Stable Boundary Layer, Shinfield, Reading, ECMWF, 11–23.

  • Hong, S. Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 14811496, https://doi.org/10.1002/qj.665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X. M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2011: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2016: Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Amer. Meteor. Soc., 97, 16311647, https://doi.org/10.1175/BAMS-D-14-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kangas, M., L. Rontu, C. Fortelius, M. Aurela, and A. Poikonen, 2016: Weather model verification using Sodankylä mast measurements. Geosci. Instrum. Methods Data Syst., 5, 7584, https://doi.org/10.5194/gi-5-75-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazarus, S. M., and S. K. Krueger, 1999: An evaluation of the Xu-Randall cloud fraction parameterization using ASTEX data. Ninth ARM Science Team Meeting Proc., San Antonio, TX, 1–9.

  • LeMone, M. A., and Coauthors, 2019: 100 years of progress in boundary layer meteorology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, 9.1–9.85, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1.

    • Crossref
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owens, R. G., and T. D. Hewson, 2018: ECMWF Forecast User Guide. ECMWF, https://doi.org/10.21957/m1cs7h.

    • Crossref
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99 : A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555582, https://doi.org/10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J., A. Porson, and A. Lock, 2015: An observational case study of persistent fog and comparison with an ensemble forecast model. Bound.-Layer Meteor., 155, 301327, https://doi.org/10.1007/s10546-014-9995-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renshaw, R., and P. N. Francis, 2011: Variational assimilation of cloud fraction in the operational Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 137, 19631974, https://doi.org/10.1002/qj.980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., 2014: High-resolution simulations of the night-time stable boundary layer over snow. Quart. J. Roy. Meteor. Soc., 140, 11211128, https://doi.org/10.1002/qj.2187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and J. S. Kenyon, 2016: Modifications to the Rapid Update Cycle land surface model (RUC LSM) available in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 18511865, https://doi.org/10.1175/MWR-D-15-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterk, H. A. M., G. J. Steeneveld, T. Vihma, P. S. Anderson, F. C. Bosveld, and A. A. M. Holtslag, 2015: Clear-sky stable boundary layers with low winds over snow-covered surfaces. Part 1: WRF model evaluation. Quart. J. Roy. Meteor. Soc., 141, 21652184, https://doi.org/10.1002/qj.2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sultana, R., K. L. Hsu, J. Li, and S. Sorooshian, 2014: Evaluating the Utah Energy Balance (UEB) snow model in the Noah land-surface model. Hydrol. Earth Syst. Sci., 18, 35533570, https://doi.org/10.5194/hess-18-3553-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2015: Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys., 53, 956993, https://doi.org/10.1002/2015RG000487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svensson, G., M. Tjernström, and D. Koračin, 2000: The sensitivity of a stratocumulus transition: Model simulations of the ASTEX first Lagrangian. Bound.-Layer Meteor., 95, 5790, https://doi.org/10.1023/A:1002434314651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS Experiment. Bound.-Layer Meteor., 140, 177206, https://doi.org/10.1007/s10546-011-9611-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., G. Svensson, L. Magnusson, I. M. Brooks, J. Prytherch, J. Vüllers, and G. Young, 2021: Central Arctic weather forecasting: Confronting the ECMWF IFS with observations from the Arctic Ocean 2018 expedition. Quart. J. Roy. Meteor. Soc., 147, 12781299, https://doi.org/10.1002/qj.3971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Undén, P., and Coauthors, 2002: High Resolution Limited Area Model, HIRLAM-5 Scientific Documentation. Swedish Meteorological and Hydrological Institute, 144 pp., http://hdl.handle.net/20.500.11765/6323.

  • van der Veen, S. H., 2013: Improving NWP model cloud forecasts using Meteosat Second-Generation imagery. Mon. Wea. Rev., 141, 15451557, https://doi.org/10.1175/MWR-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yucel, I., W. J. Shuttleworth, R. T. Pinker, L. Lu, and S. Sorooshian, 2002: Impact of ingesting satellite-derived cloud cover into the regional atmospheric modeling system. Mon. Wea. Rev., 130, 610628, https://doi.org/10.1175/1520-0493(2002)130<0610:IOISDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 468 0 0
Full Text Views 1660 189 12
PDF Downloads 392 100 9