• Ahern, M., and Coauthors, 2005: Global health impacts of floods: Epidemiologic evidence. Epidemiol. Rev., 27, 3646, https://doi.org/10.1093/epirev/mxi004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2013: Impacts of the mountain–plains solenoid and cold pool dynamics on the diurnal variation of warm-season precipitation over northern China. Atmos. Chem. Phys., 13, 69656982, https://doi.org/10.5194/acp-13-6965-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., S. Miao, and F. Chen, 2016: Impact of physics parameterizations on high-resolution weather prediction over two Chinese megacities. J. Geophys. Res. Atmos., 121, 44874498, https://doi.org/10.1002/2015JD024450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., and J. O. Haerter, 2013: Unexpected increase in precipitation intensity with temperature—A result of mixing precipitation types? Atmos. Res., 119, 5661, https://doi.org/10.1016/j.atmosres.2011.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516, https://doi.org/10.1016/S1352-2310(99)00374-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1992: Inadvertent weather modification in urban areas: Lessons for global climate change. Bull. Amer. Meteor. Soc., 73, 619627, https://doi.org/10.1175/1520-0477(1992)073<0619:IWMIUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., F. Zhang, and K. Zhao, 2016: Diurnal variations of the land–sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 47934815, https://doi.org/10.1175/JAS-D-16-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doan, Q.-V., A. Dipankar, A. Simόn-Moral, C. Sanchez, V. Prasanna, M. Roth, and X.-Y. Huang, 2021: Urban-induced modifications to the diurnal cycle of rainfall over a tropical city. Quart. J. Roy. Meteor. Soc., 147, 11891201, https://doi.org/10.1002/qj.3966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2017: ERA5 reanalysis. Research data archive at the National Center for Atmospheric Research, Computational and Information System Laboratory, accessed 10–20 June 2019, https://doi.org/10.5065/D6X34W69.

    • Crossref
    • Export Citation
  • Grimm, N. B., and Coauthors, 2008: Global change and the ecology of cities. Science, 319, 756760, https://doi.org/10.1126/science.1150195.

  • Haerter, J. O., and P. Berg, 2009: Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci., 2, 372373, https://doi.org/10.1038/ngeo523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., P. Berg, and S. Hagemann, 2010: Heavy rain intensity distributions on varying time scales and at different temperatures. J. Geophys. Res., 115, D17102, https://doi.org/10.1029/2009JD013384.

    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., C. Green, R. J. Nicholls, and J. Corfee-Morlot, 2013: Future flood losses in major coastal cities. Nat. Climate Change, 3, 802806, https://doi.org/10.1038/nclimate1979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J. Y., J. J. Baik, and A. P. Khain, 2012: A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci., 69, 504520, https://doi.org/10.1175/JAS-D-11-071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 532 pp.

    • Crossref
    • Export Citation
  • Houze, R., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, 17.1–17.54, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Crossref
    • Export Citation
  • Huff, F. A., and S. A. Changnon, 1973: Precipitation modification by major urban areas. Bull. Amer. Meteor. Soc., 54, 12201233, https://doi.org/10.1175/1520-0477(1973)054<1220:PMBMUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and J. L. Vogel, 1978: Urban, topographic, and diurnal effects on rainfall in the St. Louis region. J. Appl. Meteor., 17, 565577, https://doi.org/10.1175/1520-0450(1978)017<0565:UTADEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessinger, C., S. Ellis, and J. Van Andel, 2003: The radar echo classifier: A fuzzy logic algorithm for the WSR-88 D. Preprints, Third Conf. on Artificial Applications to the Environmental Sciences, Long Beach, CA, Amer. Meteor. Soc., P1.6, http://ams.confex.com/ams/pdfpapers/54946.pdf.

  • Knapp, A. K., and Coauthors,, 2008: Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811821, https://doi.org/10.1641/B580908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, https://doi.org/10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., Y. Luo, D.-L. Zhang, M. Chen, C. Wu, J. Yin, and R. Ma, 2021: Analysis of a record-breaking rainfall event associated with a monsoon coastal megacity of South China using multisource data. IEEE Trans. Geosci. Remote Sens., 59, 64046414, https://doi.org/10.1109/TGRS.2020.3029831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., J. Fan, J.-H. Jeong, Y. Zhang, C. R. Homeyer, and J. Wang, 2021: Urbanization-induced land and aerosol impacts on storm propagation and hail characteristics. J. Atmos. Sci., 78, 925947, https://doi.org/10.1175/JAS-D-20-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., J. C. Chan, and A. Y. Cheng, 2001: Internal boundary layer structure under sea-breeze conditions in Hong Kong. Atmos. Environ., 35, 683692, https://doi.org/10.1016/S1352-2310(00)00335-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., M. Wu, F. Ren, J. Li, and W.-K. Wong, 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 87038719, https://doi.org/10.1175/JCLI-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

    • Crossref
    • Export Citation
  • Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor., 41, 12471266, https://doi.org/10.1175/1520-0450(2002)041<1247:NSOUIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., L. J. Miller, R. L. Vaughan, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol., 3, 143161, https://doi.org/10.1175/1520-0426(1986)003<0143:TMOMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölders, N., and M. A. Olson, 2004: Impact of urban effects on precipitation in high latitudes. J. Hydrometeor., 5, 409429, https://doi.org/10.1175/1525-7541(2004)005<0409:IOUEOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales, A., R. S. Schumacher, and S. M. Kreidenweis, 2015: Mesoscale vortex development during extreme precipitation: Colorado, September 2013. Mon. Wea. Rev., 143, 49434962, https://doi.org/10.1175/MWR-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2018: Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices. J. Atmos. Sci., 75, 29833009, https://doi.org/10.1175/JAS-D-17-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2020a: Observations of extreme short-term precipitation associated with supercells and mesovortices. Mon. Wea. Rev., 148, 159182, https://doi.org/10.1175/MWR-D-19-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2020b: Dynamical mechanisms supporting extreme rainfall accumulations in the Houston “Tax Day” 2016 flood. Mon. Wea. Rev., 148, 83109, https://doi.org/10.1175/MWR-D-19-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., T. Holt, S. Zhong, P. C. Pyle, and J. Basara, 2006: Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the southern Great Plains. J. Geophys. Res., 111, D19107, https://doi.org/10.1029/2005JD006746.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., and H. Kida, 2004: Local circulations developed in the vicinity of both coastal and inland urban areas. Part II: Effects of urban and mountain areas on moisture transport. J. Appl. Meteor., 43, 119133, https://doi.org/10.1175/1520-0450(2004)043<0119:LCDITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooi, M. C. G., A. Chan, and K. Subramaniam, 2017: Interaction of urban heating and local winds during the calm intermonsoon seasons in the tropics. J. Geophys. Res. Atmos., 122, 11 49911 523, https://doi.org/10.1002/2017JD026690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931806, https://doi.org/10.1126/science.287.5459.1793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part I. Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331344, https://doi.org/10.1007/s00704-009-0142-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574, https://doi.org/10.1175/2008WAF2222173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stein, U., and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 21072115, https://doi.org/10.1175/1520-0469(1993)050<2107:FSINS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and F. Zhang, 2012: Impacts of mountain–plains solenoid on diurnal variations of rainfalls along the mei-yu front over the east China plains. Mon. Wea. Rev., 140, 379397, https://doi.org/10.1175/MWR-D-11-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, H., A. Walton, J. Sang, and J. C. Chan, 2005: Numerical simulation of the urban boundary layer over the complex terrain of Hong Kong. Atmos. Environ., 39, 35493563, https://doi.org/10.1016/j.atmosenv.2005.02.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and D. A. Ahijevych, 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 10661090, https://doi.org/10.1175/2009JAS3247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UN Department of Economic and Social Affairs, Population Division, 2011: Comprehensive tables. Vol. I, World Population Prospects: The 2010 Revision, United Nations, ST/ESA/SER.A/313, 503 pp.

  • Wang, H., and Coauthors, 2009: Development and application of the Doppler Weather Radar 3-D digital mosaic system. Yingyong Qixiang Xuebao, 20, 214224.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. L. Luo, and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13 20613 232, https://doi.org/10.1002/2014JD022339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., J. P. Evans, R. Mehrotra, and A. Sharma, 2013: A conditional disaggregation algorithm for generating fine time-scale rainfall data in a warmer climate. J. Hydrol., 479, 8699, https://doi.org/10.1016/j.jhydrol.2012.11.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

    • Crossref
    • Export Citation
  • Witze, A., 2018: Why extreme rains are gaining strength as the climate warms. Nature, 563, 458460, https://doi.org/10.1038/d41586-018-07447-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., Y. Luo, F. Chen, and W. K. Wong, 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 17991819, https://doi.org/10.1175/JAMC-D-18-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., and Coauthors, 2016: Contrasting impacts of urban forms on the future thermal environment: Example of Beijing metropolitan area. Environ. Res. Lett., 11, 034018, https://doi.org/10.1088/1748-9326/11/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., J. Smith, and D. Niyogi, 2019: Urban impacts on extreme monsoon rainfall and flooding in complex terrain. Geophys. Res. Lett., 46, 59185927, https://doi.org/10.1029/2019GL083363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., D.-L. Zhang, Y. Luo, and R. Ma, 2020: On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148, 955979, https://doi.org/10.1175/MWR-D-19-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., 1990: Vertical structure of the sea breeze penetrating through a large urban complex. J. Appl. Meteor., 29, 878891, https://doi.org/10.1175/1520-0450(1990)029<0878:VSOTSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C. L., F. Chen, S. G. Miao, Q. C. Li, X. A. Xia, and C. Y. Xuan, 2009: Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res., 114, D02116, https://doi.org/10.1029/2008JD010328.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., 2020: Rapid urbanization and more extreme rainfall events. Sci. Bull. (Beijing), 65, 516518, https://doi.org/10.1016/j.scib.2020.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., M. Jin, Y. Shou, and C. Dong, 2019: The influences of urban building complexes on the ambient flows over the Washington–Reston region. J. Appl. Meteor. Climatol, 58, 13251336, https://doi.org/10.1175/JAMC-D-19-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2017: Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci., 10, 255259, https://doi.org/10.1038/ngeo2911.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 826 693 46
Full Text Views 292 253 13
PDF Downloads 319 279 11

On the Localized Extreme Rainfall over the Great Bay Area in South China with Complex Topography and Strong UHI Effects

View More View Less
  • 1 aCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 bState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 3 cMinistry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, and Joint Center for Global Change Studies (JCGCS), Tsinghua University, Beijing, China
  • | 4 dZhejiang Institute of Meteorological Sciences, Zhejiang Meteorological Bureau, Hangzhou, China
  • | 5 eInstitute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China
  • | 6 fDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
Restricted access

Abstract

In this study, high-resolution surface and radar observations are used to analyze 24 localized extreme hourly rainfall (EXHR; >60 mm h−1) events with strong urban heat island (UHI) effects over the Great Bay Area (GBA) in South China during the 2011–16 warm seasons. Quasi-idealized, convection-permitting ensemble simulations driven by diurnally varying lateral boundary conditions, which are extracted from the composite global analysis of 3–5 June 2013, are then conducted with a multilayer urban canopy model to unravel the influences of the UHI and various surface properties nearby on the EXHR generation in a complex geographical environment with sea–land contrast, topography, and vegetation variation. Results show that EXHR is mostly distributed over the urban agglomeration and within about 40 km on its downwind side, and produced during the afternoon-to-evening hours by short-lived meso-γ- to meso-β-scale storms. On the EXHR days, the GBA is featured by a weak gradient environment with abundant moisture, and a weak southwesterly flow prevailing in the boundary layer (BL). The UHI effects lead to the development of a deep mixed layer with “warm bubbles” over the urban agglomeration, in which the lower-BL convergence and BL-top divergence is developed, assisting in convective initiation. Such urban BL processes and associated convective development with moisture supply by the synoptic low-level southwesterly flow are enhanced by orographically increased horizontal winds and sea breezes under the influence of the herringbone coastline, thereby increasing the inhomogeneity and intensity of rainfall production over the “Π-shaped” urban clusters. Vegetation variations are not found to be an important factor in determining the EXHR production over the region.

Luo’s ORCID: 0000-0002-5447-3255.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yali Luo, ylluo@cma.gov.cn, yali.luo@qq.com

Abstract

In this study, high-resolution surface and radar observations are used to analyze 24 localized extreme hourly rainfall (EXHR; >60 mm h−1) events with strong urban heat island (UHI) effects over the Great Bay Area (GBA) in South China during the 2011–16 warm seasons. Quasi-idealized, convection-permitting ensemble simulations driven by diurnally varying lateral boundary conditions, which are extracted from the composite global analysis of 3–5 June 2013, are then conducted with a multilayer urban canopy model to unravel the influences of the UHI and various surface properties nearby on the EXHR generation in a complex geographical environment with sea–land contrast, topography, and vegetation variation. Results show that EXHR is mostly distributed over the urban agglomeration and within about 40 km on its downwind side, and produced during the afternoon-to-evening hours by short-lived meso-γ- to meso-β-scale storms. On the EXHR days, the GBA is featured by a weak gradient environment with abundant moisture, and a weak southwesterly flow prevailing in the boundary layer (BL). The UHI effects lead to the development of a deep mixed layer with “warm bubbles” over the urban agglomeration, in which the lower-BL convergence and BL-top divergence is developed, assisting in convective initiation. Such urban BL processes and associated convective development with moisture supply by the synoptic low-level southwesterly flow are enhanced by orographically increased horizontal winds and sea breezes under the influence of the herringbone coastline, thereby increasing the inhomogeneity and intensity of rainfall production over the “Π-shaped” urban clusters. Vegetation variations are not found to be an important factor in determining the EXHR production over the region.

Luo’s ORCID: 0000-0002-5447-3255.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yali Luo, ylluo@cma.gov.cn, yali.luo@qq.com
Save