• Bell, M. M., M. Dixon, B. Javornik, W.-C. Lee, B. Melli, J. DeHart, and T.-Y. Cha, 2019: nsf-lrose/lrose-blaze: lrose-blaze-20190105. Zenodo, accessed 9 April 2019, https://doi.org/10.5281/ZENODO.2532758.

    • Crossref
    • Export Citation
  • Bellenger, H., Y. N. Takayubu, T. Ushiyuma, and K. Yoneyama, 2010: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon. Wea. Rev., 138, 24262433, https://doi.org/10.1175/2010MWR3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and M. D. Fowler, 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 53255334, https://doi.org/10.1175/JCLI-D-14-00804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browner, S. P., W. L. Woodley, and C. G. Griffith, 1977: Diurnal oscillation of the area of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856864, https://doi.org/10.1175/1520-0493(1977)105<0856:DOOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2014: Influence of cloud-radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 16441662, https://doi.org/10.1175/JAS-D-13-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., P. H. Haertel, R. H. Johnson, J. Wang, and S. Loehrer, 2012: Developing high-quality field program sounding datasets. Bull. Amer. Meteor. Soc., 93, 325336, https://doi.org/10.1175/BAMS-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, W. H. Schubert, and J. H. Ruppert, 2018: Diurnal cycle of the ITCZ in DYNAMO. J. Climate, 31, 45434562, https://doi.org/10.1175/JCLI-D-17-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G., 1996: Numerical experiments on radiation and tropical cyclones. Quart. J. Roy. Meteor. Soc., 122, 415422, https://doi.org/10.1002/qj.49712253006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditchek, S. D., J. Molinari, K. L. Corbosiero, and R. G. Fovell, 2019a: An objective climatology of tropical cyclone diurnal pulses in the Atlantic basin. Mon. Wea. Rev., 147, 591605, https://doi.org/10.1175/MWR-D-18-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditchek, S. D., K. L. Corbosiero, R. G. Fovell, and J. Molinari, 2019b: Electrically active tropical cyclone diurnal pulses in the Atlantic basin. Mon. Wea. Rev., 147, 35953607, https://doi.org/10.1175/MWR-D-19-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditchek, S. D., K. L. Corbosiero, R. G. Fovell, and J. Molinari, 2020: Electrically active diurnal pulses in Hurricane Harvey (2017). Mon. Wea. Rev., 148, 22832305, https://doi.org/10.1175/MWR-D-20-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and D. S. Nolan, 2019: Tropical cyclone diurnal cycle signals in a hurricane nature run. Mon. Wea. Rev., 147, 363388, https://doi.org/10.1175/MWR-D-18-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, P., and J. Molinari, 2016: Upper-tropospheric low Richardson number in tropical cyclones: Sensitivity to cyclone intensity and the diurnal cycle. J. Atmos. Sci., 73, 545554, https://doi.org/10.1175/JAS-D-15-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, P., and J. Molinari, 2019: Tropopause evolution in a rapidly intensifying tropical cyclone: A static stability budget analysis in an idealized axisymmetric framework. J. Atmos. Sci., 76, 209229, https://doi.org/10.1175/JAS-D-18-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, R. C., and D. S. Nolan, 2019: Balanced and radiating wave responses to diurnal heating in tropical cyclone–like vortices using a linear nonhydrostatic model. J. Atmos. Sci., 76, 25752597, https://doi.org/10.1175/JAS-D-18-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., K. L. Corbosiero, A. Seifert, and K.-N. Liou, 2010: Impact of cloud-radiative processes on hurricane track. Geophys. Res. Lett., 37, L07808, https://doi.org/10.1029/2010GL042691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., K. L. Bu, Y. P. Corbosiero, W. Tung, Y. Cao, H. Kuo, L. Hsu, and H. Su, 2016: Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, 11.1–11.27, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0006.1.

    • Crossref
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobgood, J. S., 1986: A possible mechanism for the diurnal oscillations of tropical cyclones. J. Atmos. Sci., 43, 29012922, https://doi.org/10.1175/1520-0469(1986)043<2901:APMFTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, G., G. Heygster, and C. A. M. Rodriguez, 2006 : Effect of cirrus clouds on the diurnal cycle of tropical deep convective clouds. J. Geophys. Res., 111, D06209, https://doi.org/10.1029/2005JD006208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, https://doi.org/10.1175/2009MWR2989.1.

  • Houze, R. A., Jr., S. A. Rutledge, T. J. Matejka, and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III: Air motions and precipitation growth in a warm-frontal rainband. J. Atmos. Sci., 38, 639649, https://doi.org/10.1175/1520-0469(1981)038<0639:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, K. G., J. N. Moum, and E. L. Shroyer, 2020: Evolution of the velocity structure in the diurnal warm layer. J. Phys. Oceanogr., 50, 615631, https://doi.org/10.1175/JPO-D-19-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. J. Slocum, and K. D. Musgrave, 2019: Quantification and exploration of diurnal oscillations in tropical cyclones. Mon. Wea. Rev., 147, 21052121, https://doi.org/10.1175/MWR-D-18-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. DeMaria, 2016: Reducing operational hurricane intensity forecast errors during eyewall replacement cycles. Wea. Forecasting, 31, 601608, https://doi.org/10.1175/WAF-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., and D. J. Cecil, 2016: Tropical cyclone diurnal cycle as observed by TRMM. Mon. Wea. Rev., 144, 27932808, https://doi.org/10.1175/MWR-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and Y. Wang, 2012: Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone. J. Atmos. Sci., 69, 9971020, https://doi.org/10.1175/2011JAS3690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and G. J. Tripoli, 1998: Inertial available kinetic energy and the dynamics of tropical plume formation. Mon. Wea. Rev., 126, 22002216, https://doi.org/10.1175/1520-0493(1998)126<2200:IAKEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, https://doi.org/10.1175/JAS-D-13-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merritt, E., and R. Wexler, 1967: Cirrus canopies in tropical storms. Mon. Wea. Rev., 95, 111120, https://doi.org/10.1175/1520-0493(1967)095<0111:CCITS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1983: Diurnal-variations of satellite-measured TBB areal distribution and eye diameter of mature typhoons. J. Meteor. Soc. Japan, 61, 7790, https://doi.org/10.2151/jmsj1965.61.1_77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarro, E. L., and G. J. Hakim, 2016: Idealized numerical modeling of the diurnal cycle of tropical cyclones. J. Atmos. Sci., 73, 41894201, https://doi.org/10.1175/JAS-D-15-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarro, E. L., G. J. Hakim, and H. E. Willoughby, 2017: Balanced response of an axisymmetric tropical cyclone to periodic diurnal heating. J. Atmos. Sci., 74, 33253337, https://doi.org/10.1175/JAS-D-16-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., 2015: An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity. Atmos. Chem. Phys., 15, 90039029, https://doi.org/10.5194/acp-15-9003-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, M. E., D. Perez-Betancourt, and A. A. Wing, 2017: Accessible environments for diurnal-period waves in simulated tropical cyclones. J. Atmos. Sci., 74, 24892502, https://doi.org/10.1175/JAS-D-16-0294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., R. A. Houze Jr., and S. R. Brodzik, 2016: Rainfall-type categorization of radar echoes using polar coordinate reflectivity data. J. Atmos. Oceanic Technol., 33, 523538, https://doi.org/10.1175/JTECH-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Razin, N., P. J. Brown, C. J. Slocum, J. Knaff, M. M. Bell, 2021: Tropical Cyclone Precipitation, Infrared, Microwave, and Environmental Dataset (TC PRIMED). 34th Conf. on Hurricanes and Tropical Meteorology, 68, Amer. Meteor. Soc., https://ams.confex.com/ams/34HURR/meetingapp.cgi/Paper/373164.

  • Rios-Berrios, R., 2020: Impacts of radiation and cold pools on the intensity and vortex tilt of weak tropical cyclones interacting with vertical wind shear. J. Atmos. Sci., 77, 669689, https://doi.org/10.1175/JAS-D-19-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivoire, L., T. Birner, J. A. Knaff, and N. Tourville, 2020: Quantifying the radiative impact of clouds on tropopause layer cooling in tropical cyclones. J. Climate, 33, 63616376, https://doi.org/10.1175/JCLI-D-19-0813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., R. A. Houze Jr., S. Brodzik, and M. D. Zuluaga, 2019: The diurnal and microphysical characteristics of MJO rain events during DYNAMO. J. Atmos. Sci., 76, 19751988, https://doi.org/10.1175/JAS-D-18-0316.1.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and D. Klocke, 2019: The two diurnal modes of tropical upward motion. Geophys. Res. Lett., 46, 29112921, https://doi.org/10.1029/2018GL081806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and M. E. O’Neill, 2019: Diurnal cloud and circulation changes in simulated tropical cyclones. Geophys. Res. Lett., 46, 502511, https://doi.org/10.1029/2018GL081302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., A. A. Wing, X. Tang, and E. L. Duran, 2020: The critical role of cloud–infrared radiation feedback in tropical cyclone development. Proc. Natl. Acad. Sci. USA, 117, 27 88427 892, https://doi.org/10.1073/pnas.2013584117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., V. Chandrasekar, B. Fuchs, J. George, F. Junyent, B. Dolan, P. C. Kennedy, and K. Drushka, 2019: SEA-POL goes to sea. Bull. Amer. Meteor. Soc., 100, 22852301, https://doi.org/10.1175/BAMS-D-18-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, T., and Coauthors, 2012: The Saffir-Simpson hurricane wind scale. NOAA/National Hurricane Center, 4 pp., https://www.nhc.noaa.gov/pdf/sshws.pdf.

  • Smith, W. P., M. E. Nichols, and R. A. Pielke, 2020: The role of radiation in accelerating tropical cyclogenesis in idealized simulations. J. Atmos. Sci., 77, 12611277, https://doi.org/10.1175/JAS-D-19-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Sprintall, E. D. Maloney, Z. K. Martin, S. Wang, S. P. de Szoeke, B. C. Trabing, and S. A. Rutledge, 2021: Large-scale state and evolution of the atmosphere and ocean during PISTON 2018. J. Climate, 34, 50175035, https://doi.org/10.1175/JCLI-D-20-0517.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M. R., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steranka, J., E. Rodgers, and R. C. Gentry, 1977: The diurnal variation of Atlantic Ocean tropical cyclone cloud distribution inferred from geostationary satellite infrared measurements. Mon. Wea. Rev., 112, 23382344, https://doi.org/10.1175/1520-0493(1984)112<2338:TDVOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and S. F. Abarca, 2016: Lightning in eastern North Pacific tropical cyclones: A comparison to the North Atlantic. Mon. Wea. Rev., 144, 225239, https://doi.org/10.1175/MWR-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1970: Numerical simulation of the development of tropical cyclones with a ten-level model. Part II. Tellus, 22, 504510, https://doi.org/10.1111/j.2153-3490.1970.tb00516.x.

    • Search Google Scholar
    • Export Citation
  • Tang, X., and F. Zhang, 2016: Impacts of the diurnal radiation cycle on the formation, intensity, and structure of Hurricane Edouard (2014). J. Atmos. Sci., 73, 28712892, https://doi.org/10.1175/JAS-D-15-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, X., Z. Tan, J. Fang, Q. Sun, and F. Zhang, 2017: Impacts of diurnal radiation cycle on secondary eyewall formation. J. Atmos. Sci., 74, 30793098, https://doi.org/10.1175/JAS-D-17-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., J. N. Moum, C. W. Fairall, and S. A. Rutledge, 2019: Wind limits on rain layers and diurnal warm layers. J. Geophys. Res. Oceans, 124, 897924, https://doi.org/10.1029/2018JC014130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trabing, B. C., and M. M. Bell, 2021: The sensitivity of eyewall replacement cycles to shortwave radiation. J. Geophys. Res. Atmos., 126, e2020JD034016, https://doi.org/10.1029/2020JD034016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trabing, B. C., M. M. Bell, and B. R. Brown, 2019: Impacts of radiation and upper tropospheric temperatures on tropical cyclone structure and intensity. J. Atmos. Sci., 76, 135153, https://doi.org/10.1175/JAS-D-18-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-F., and Z.-M. Tan, 2020: Outer rainbands–driven secondary eyewall formation of tropical cyclones. J. Atmos. Sci., 77, 22172236, https://doi.org/10.1175/JAS-D-19-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Definition of the tropopause. WMO Bull., 6, 136.

  • Wu, Q., and Z. Ruan, 2016: Diurnal variations of the areas and temperatures in tropical cyclone clouds. Quart. J. Roy. Meteor. Soc., 142, 27882796, https://doi.org/10.1002/qj.2868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., J. Hong, and Z. Ruan, 2020: Diurnal variations in tropical cyclone intensification. Geophys. Res. Lett., 47, e2020GL090397, https://doi.org/10.1029/2020GL090397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1995: Impact of interactive radiative transfer on the macroscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud-radiation interactions. J. Atmos. Sci., 52, 800817, https://doi.org/10.1175/1520-0469(1995)052<0800:IOIRTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor., 36, 847867, https://doi.org/10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., Y. Ma, and X. Ge, 2016: Impacts of the diurnal cycle of solar radiation on spiral rainbands. Adv. Atmos. Sci., 33, 10851095, https://doi.org/10.1007/s00376-016-5229-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109126, https://doi.org/10.1175/JAS3599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 212 212 42
Full Text Views 77 77 14
PDF Downloads 94 94 20

Observations of Diurnal Variability under the Cirrus Canopy of Typhoon Kong-rey (2018)

View More View Less
  • 1 a Colorado State University, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A growing body of work has documented the existence of diurnal oscillations in the tropical cyclone outflow layer. These diurnal pulses have been examined primarily using satellites or numerical models, and detailed full tropospheric observations or case study analyses of diurnal pulses are lacking. Questions remain on the vertical extent of diurnal pulses and whether diurnal pulses are coupled to convective bands or constrained to the outflow layer. During the Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign, diurnal oscillations in the upper-level clouds were observed during Typhoon Kong-rey’s (2018) rapid intensification. Over a 3.5-day period where a broad distribution of cold upper-level clouds was overhead, detailed observations of Typhoon Kong-rey’s rainbands show that convection had reduced echo tops but enhanced reflectivity and differential reflectivity aloft compared to other observations during PISTON. Shortwave heating in the upper levels increased the stability profile in an overall favorable thermodynamic environment for convection during the day, which could help to explain the diurnal differences in convective structure. Under the cirrus canopy, nocturnal convection was deeper and daytime convection shallower in contrast to the rest of the PISTON dataset. Diurnal oscillations in the brightness temperatures were found to be coupled to radially outward propagating convective rainbands that were preceded ~6 h by outflow jets. The cooling pulses occurred earlier than found in previous studies. The pulses were asymmetric spatially, which is likely due to a combination of the vertical wind shear and storm intensity.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Trabing, btrabing@colostate.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex special collection.

Abstract

A growing body of work has documented the existence of diurnal oscillations in the tropical cyclone outflow layer. These diurnal pulses have been examined primarily using satellites or numerical models, and detailed full tropospheric observations or case study analyses of diurnal pulses are lacking. Questions remain on the vertical extent of diurnal pulses and whether diurnal pulses are coupled to convective bands or constrained to the outflow layer. During the Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign, diurnal oscillations in the upper-level clouds were observed during Typhoon Kong-rey’s (2018) rapid intensification. Over a 3.5-day period where a broad distribution of cold upper-level clouds was overhead, detailed observations of Typhoon Kong-rey’s rainbands show that convection had reduced echo tops but enhanced reflectivity and differential reflectivity aloft compared to other observations during PISTON. Shortwave heating in the upper levels increased the stability profile in an overall favorable thermodynamic environment for convection during the day, which could help to explain the diurnal differences in convective structure. Under the cirrus canopy, nocturnal convection was deeper and daytime convection shallower in contrast to the rest of the PISTON dataset. Diurnal oscillations in the brightness temperatures were found to be coupled to radially outward propagating convective rainbands that were preceded ~6 h by outflow jets. The cooling pulses occurred earlier than found in previous studies. The pulses were asymmetric spatially, which is likely due to a combination of the vertical wind shear and storm intensity.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Trabing, btrabing@colostate.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex special collection.

Save