• Bharti, V., and C. Singh, 2015: Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region. J. Geophys. Res. Atmos., 120, 12 45812 473, https://doi.org/10.1002/2015JD023779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecinati, F., A. M. Moreno-Ródenas, M. A. Rico-Ramirez, M. Ten Veldhuis, and J. G. Langeveld, 2018: Considering rain gauge uncertainty using kriging for uncertain data. Atmosphere, 9, 446, https://doi.org/10.3390/atmos9110446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2015: Intercomparison of precipitation estimates from WSR-88D radar and TRMM measurement over continental United States. IEEE Trans. Geosci. Remote Sens., 53, 44444456, https://doi.org/10.1109/TGRS.2015.2399307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., E. E. Ebert, K. J. Walsh, and N. E. Davidson, 2013: Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res. Atmos., 118, 21842196, https://doi.org/10.1002/jgrd.50250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, https://doi.org/10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2012: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, https://doi.org/10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, 2020: Madden/Julian Oscillation update archive. NOAA Center for Weather and Climate Prediction, accessed October 2020, https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/ARCHIVE/PDF/.

    • Search Google Scholar
    • Export Citation
  • Cui, W., X. Dong, B. Xi, Z. Feng, and J. Fan, 2020: Can the GPM IMERG final product accurately represent MCSs’ precipitation characteristics over the central and eastern United States? J. Hydrometeor., 21, 3957, https://doi.org/10.1175/JHM-D-19-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, https://doi.org/10.1175/BAMS-88-1-47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2015: Precipitation climatology to facilitate computation of the SEEPS score. European Centre for Medium Range Weather Forecasts, accessed 2015, https://confluence.ecmwf.int/display/WLD/Climatology.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, https://doi.org/10.1002/qj.49712253107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., and A. H. Murphy, 1992: Equitable skill scores for categorical forecasts. Mon. Wea. Rev., 120, 361370, https://doi.org/10.1175/1520-0493(1992)120<0361:ESSFCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., W. F. Krajewski, V. Nespor, and A. Kruger, 1999: Numerical simulation studies of rain gage data correction due to wind effect. J. Geophys. Res., 104, 19  72319 733, https://doi.org/10.1029/1999JD900228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., M. Rodwell, D. Richardson, A. Okagaki, T. Robinson, and T. Hewson, 2012: Intercomparison of global model precipitation forecast skill in 2010/11 using the SEEPS score. Mon. Wea. Rev., 140, 27202733, https://doi.org/10.1175/MWR-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., and J. Juras, 2006: Measuring forecast skill: Is it real skill or is it varying climatology? Quart. J. Roy. Meteor. Soc., 132, 29052923, https://doi.org/10.1256/qj.06.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 322, https://doi.org/10.1007/978-90-481-2915-7_1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphrey, M. D., J. D. Istok, J. Y. Lee, J. A. Hevesi, and A. L. Flint, 1997: A new method for automated dynamic calibration of tipping-bucket rain gauges. J. Atmos. Oceanic Technol., 14, 15131519, https://doi.org/10.1175/1520-0426(1997)014<1513:ANMFAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Køltzow, M., B. Casati, E. Bazile, T. Haiden, and T. Valkonen, 2019: An NWP model intercomparison of surface weather parameters in the European Arctic during the Year of Polar Prediction Special Observing Period Northern Hemisphere 1. Wea. Forecasting, 34, 959983, https://doi.org/10.1175/WAF-D-19-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A., A. Brown, M. Bush, G. Martin, and R. Smith, 2000: A new boundary layer mixing scheme. Part 1: Scheme description and single column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., P. Meyers, and M. Robinson, 2016: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeor., 17, 11011117, https://doi.org/10.1175/JHM-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C., D. Ovens, K. Westrick, and B. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific northwest. Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massari, C., and V. Maggioni, 2020: Error and uncertainty characterization. Satellite Precipitation Measurement, Vol. 2, V. Levizzani et al., Eds., Springer, 515532, https://doi.org/10.1007/978-3-030-35798-6_4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A., and R. Winkler, 1987: A general framework for forecast verification. Mon. Wea. Rev., 115, 13301338, https://doi.org/10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, R., M. Trueman, M. Mittermaier, and M. Rodwell, 2013: An assessment of the SEEPS and SEDI metrics for the verification of 6 h forecast precipitation accumulations. Meteor. Appl., 20, 164175, https://doi.org/10.1002/met.1405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., U. Foelsche, G. Kirchengast, J. Fuchsberger, J. Tan, and W. A. Petersen, 2017: Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci., 21, 65596572, https://doi.org/10.5194/hess-21-6559-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirce, C., 1884: The numerical measure of the success of predictions. Science, NS-4, 453454, https://doi.org/10.1126/science.ns-4.93.453.b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., P. Chambon, I. Jobard, P.-E. Kirstetter, M. Gosset, and J. C. Bergès, 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteor. Climatol., 49, 715731, https://doi.org/10.1175/2009JAMC2318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M., D. Richardson, T. Hewson, and T. Haiden, 2010: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 136, 13441363, https://doi.org/10.1002/qj.656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M., T. Haiden, and D. Richardson, 2011: Developments in precipitation verification. ECMWF Newsletter, No. 128, ECMWF, Reading, United Kingdom, 1216, https://www.ecmwf.int/node/14595.

    • Search Google Scholar
    • Export Citation
  • Rossa, A., P. Nurmi, and E. Ebert, 2008: Overview of methods for the verification of quantitative precipitation forecasts. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 419452, https://doi.org/10.1007/978-3-540-77655-0_16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, M., T. L’Ecuyer, M. Lebsock, and J. Haynes, 2014: A comparison of precipitation occurrence from the NCEP Stage IV QPE product and the CloudSat Cloud Profiling Radar. J. Hydrometeor., 15, 444458, https://doi.org/10.1175/JHM-D-13-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRMM, 2011: TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree × 0.25 degree V7. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 2015, https://doi.org/10.5067/TRMM/TMPA/3H/7.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, https://doi.org/10.1029/2007JD009214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, P., P. Knippertz, A. H. Fink, A. Schlueter, and T. Gneiting, 2018: Skill of global raw and postprocessed ensemble predictions of rainfall over northern tropical Africa. Wea. Forecasting, 33, 369388, https://doi.org/10.1175/WAF-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, M., and M. Whitall, 2017: A simple prognostic based convective entrainment rate for the unified model: Description and tests. Met Office Forecasting Research Tech. Rep. 617, 54 pp., https://digital.nmla.metoffice.gov.uk/download/file/digitalFile_2add1f55-d638-4120-97ce-69bf57cc5916.

    • Search Google Scholar
    • Export Citation
  • Wilson, D., and S. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, https://doi.org/10.1002/qj.49712555707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D., A. Bushell, A. Kerr-Munslow, J. Price, and C. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., and Coauthors, 2013: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, https://doi.org/10.1002/qj.2235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2019: Manual on the Global Data-processing and Forecasting System: Annex IV to the WMO Technical Regulations. WMO Doc. WMO-485, 148 pp., https://library.wmo.int/doc_num.php?explnum_id=10164.

    • Search Google Scholar
    • Export Citation
  • Xu, R., F. Tian, L. Yang, H. Hu, H. Lu, and A. Hou, 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos., 122, 910924, https://doi.org/10.1002/2016JD025418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and S. W. Nesbitt, 2014: Statistical properties of precipitation as observed by the TRMM precipitation radar. Geophys. Res. Lett., 41, 56365643, https://doi.org/10.1002/2014GL060683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., D. Wang, Z. Qin, Y. Zheng, and J. Guo, 2018: Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau. J. Meteor. Res., 32, 324336, https://doi.org/10.1007/s13351-018-7067-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 181 180 0
Full Text Views 96 96 1
PDF Downloads 103 103 0

Using SEEPS with a TRMM-Derived Climatology to Assess Global NWP Precipitation Forecast Skill

View More View Less
  • 1 aMet Office, Exeter, United Kingdom
Restricted access

Abstract

Monitoring precipitation forecast skill in global numerical weather prediction (NWP) models is an important yet challenging task. Rain gauges are inhomogeneously distributed, providing no information over large swathes of land and the oceans. Satellite-based products, on the other hand, provide near-global coverage at a resolution of ∼10–25 km, but limitations on data quality (e.g., biases) must be accommodated. In this paper the stable equitable error in probability space (SEEPS) is computed using a precipitation climatology derived from the Tropical Rainfall Measuring Mission (TRMM) TMPA 3B42 V7 product and a gauge-based climatology and then applied to two global configurations of the Met Office Unified Model (UM). The representativeness and resolution effects on an aggregated SEEPS are explored by comparing the gauge scores, based on extracting the nearest model grid point, with those computed by upscaling the model values to the TRMM grid and extracting the TRMM grid point nearest the gauge location. The sampling effect is explored by comparing the aggregate SEEPS for this subset of ∼6000 locations (dictated by the number of gauges available globally) with all land points within the TRMM region of 50°N and 50°S. The forecast performance over the oceanic areas is compared with performance over land. While the SEEPS computed using the two different climatologies should never be expected to be identical, using the TRMM climatology provides a means of evaluating near-global precipitation using an internally consistent dataset in a climatologically consistent way.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rachel North, rachel.north@metoffice.gov.uk

Abstract

Monitoring precipitation forecast skill in global numerical weather prediction (NWP) models is an important yet challenging task. Rain gauges are inhomogeneously distributed, providing no information over large swathes of land and the oceans. Satellite-based products, on the other hand, provide near-global coverage at a resolution of ∼10–25 km, but limitations on data quality (e.g., biases) must be accommodated. In this paper the stable equitable error in probability space (SEEPS) is computed using a precipitation climatology derived from the Tropical Rainfall Measuring Mission (TRMM) TMPA 3B42 V7 product and a gauge-based climatology and then applied to two global configurations of the Met Office Unified Model (UM). The representativeness and resolution effects on an aggregated SEEPS are explored by comparing the gauge scores, based on extracting the nearest model grid point, with those computed by upscaling the model values to the TRMM grid and extracting the TRMM grid point nearest the gauge location. The sampling effect is explored by comparing the aggregate SEEPS for this subset of ∼6000 locations (dictated by the number of gauges available globally) with all land points within the TRMM region of 50°N and 50°S. The forecast performance over the oceanic areas is compared with performance over land. While the SEEPS computed using the two different climatologies should never be expected to be identical, using the TRMM climatology provides a means of evaluating near-global precipitation using an internally consistent dataset in a climatologically consistent way.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rachel North, rachel.north@metoffice.gov.uk
Save