• Alland, J. J., B. H. Tang, and K. L. Corbosiero, 2017: Effects of mid-level dry air on development of the axisymmetric tropical cyclone secondary circulation. J. Atmos. Sci., 74, 14551470, https://doi.org/10.1175/JAS-D-16-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021a: Synergistic effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part I: Downdraft ventilation. J. Atmos. Sci., 78, 763782, https://doi.org/10.1175/JAS-D-20-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021b: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part II: Radial ventilation. J. Atmos. Sci., 78, 783796, https://doi.org/10.1175/JAS-D-20-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 44764492, https://doi.org/10.1175/MWR-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, E. Zipser, and J. Zawislak, 2020: How does Hurricane Edouard (2014) evolve toward symmetry before rapid intensification? A high-resolution ensemble study. J. Atmos. Sci., 77, 13291351, https://doi.org/10.1175/JAS-D-18-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatia, K. T., and D. S. Nolan, 2013: Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961980, https://doi.org/10.1175/WAF-D-12-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci., 46, 31773191, https://doi.org/10.1175/1520-0469(1989)046<3177:BVSTPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., C. A. Davis, and Y. Kuo, 2018: Effects of low-level flow orientation and vertical shear on the structure and intensity of tropical cyclones. Mon. Wea. Rev., 146, 24472467, https://doi.org/10.1175/MWR-D-17-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., C. A. Davis, and Y. Kuo, 2019: An idealized numerical study of shear-relative low-level mean flow on tropical cyclone intensity and size. J. Atmos. Sci., 76, 23092334, https://doi.org/10.1175/JAS-D-18-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Gu, J. A. Zhang, F. D. Marks, R. F. Rogers, and J. J. Cione, 2021: Boundary layer recovery and precipitation symmetrization preceding rapid intensification of tropical cyclones under shear. J. Atmos. Sci., 78, 15231544, https://doi.org/10.1175/JAS-D-20-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., 2015: The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Mon. Wea. Rev., 143, 904913, https://doi.org/10.1175/MWR-D-13-00380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, https://doi.org/10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., E. A. Kalina, J. A. Zhang, and E. W. Uhlhorn, 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, https://doi.org/10.1175/MWR-D-12-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and Coauthors, 2020: Eye of the storm: Observing hurricanes with a small unmanned aircraft system. Bull. Amer. Meteor. Soc., 101, E186E205, https://doi.org/10.1175/BAMS-D-19-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2018: Resolving tropical cyclone intensity in models. Geophys. Res. Lett., 45, 20822087, https://doi.org/10.1002/2017GL076966.

    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze, and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements in the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounder Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and R. A. Jeffries, 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124, 13741387, https://doi.org/10.1175/1520-0493(1996)124<1374:VWSIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., and S. J. Majumdar, 2017: The predictability of idealized tropical cyclones in environments with time-varying vertical wind shear. J. Adv. Model. Earth Syst., 9, 28362862, https://doi.org/10.1002/2017MS001168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foerster, A. M., M. M. Bell, P. A. Harr, and S. C. Jones, 2014: Observations of the eyewall structure of Typhoon Sinlaku (2008) during the transformation stage of extratropical transition. Mon. Wea. Rev., 142, 33723392, https://doi.org/10.1175/MWR-D-13-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilhousen, D. B., 1988: Quality control of meteorological data from automated marine stations. Preprints, Fourth Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology,Miami, FL, Amer. Meteor. Soc., 113117.

    • Search Google Scholar
    • Export Citation
  • Gilhousen, D. B., 1998: I mproved real-time quality control of NDBC measurements. Preprints, 10th Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 363366.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. Rogers, and R. E. Hart, 2015: Shear-relative asymmetries in tropical cyclone eyewall slope. Mon. Wea. Rev., 143, 883903, https://doi.org/10.1175/MWR-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2015: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory. J. Phys. Oceanogr., 45, 16671689, https://doi.org/10.1175/JPO-D-14-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and J. K. Brewster, 2016: Observed air-sea interactions in tropical cyclone Isaac over loop current mesoscale eddy features. Dyn. Atmos. Oceans, 76, 306324, https://doi.org/10.1016/j.dynatmoce.2016.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 11641176, https://doi.org/10.1175/MWR-D-11-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. P. Zagrodnik, C. Tao, and E. J. Zipser, 2018: Classifying precipitation types in tropical cyclones using the NRL 37 GHz color product. J. Geophys. Res. Atmos., 123, 55095524, https://doi.org/10.1029/2018JD028324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieper, M., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, https://doi.org/10.1029/2012GL052115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 19011918, https://doi.org/10.1175/MWR3155.1.

  • Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 23922408, https://doi.org/10.1175/JTECH-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., S. G. Bowen, R. Pielke, and M. Bell, 2018: Continental U.S. hurricane landfall frequency and associated damage: Observations and future risks. Bull. Amer. Meteor. Soc., 99, 13591376, https://doi.org/10.1175/BAMS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada, 2018: Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard (2014). J. Atmos. Sci., 75, 275295, https://doi.org/10.1175/JAS-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, https://doi.org/10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, https://doi.org/10.1175/2010MWR3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509, https://doi.org/10.1175/JAS3291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, https://doi.org/10.1175/JAS3591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, https://doi.org/10.1175/MWR-D-12-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900, https://doi.org/10.5194/acp-10-9879-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 17791805, https://doi.org/10.1175/2010JAS3171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, https://doi.org/10.1175/WAF955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCODA, 2019: Nov 18: Navy’s Coupled Ocean Data Assimilation (NCODA) 3-d ocean data. Accessed 1 September 2020, ftp://usgodae.org/pub/outgoing/fnmoc/models/glb_ocn/.

  • Nguyen, L. T., R. F. Rogers, and P. D. Reasor, 2017: Thermodynamic and kinematic influences on precipitation symmetry in sheared tropical cyclones: Bertha and Cristobal (2014). Mon. Wea. Rev., 145, 44234446, https://doi.org/10.1175/MWR-D-17-0073.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., R. F. Rogers, J. Zawislak, and J. A. Zhang, 2019: Assessing the influence of convective downdrafts and surface enthalpy fluxes on tropical cyclone intensity change in moderate vertical wind shear. Mon. Wea. Rev., 147, 35193534, https://doi.org/10.1175/MWR-D-18-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: The intensification of two-dimensional swirling flows by stochastic asymmetric forcing. J. Atmos. Sci., 56, 39373962, https://doi.org/10.1175/1520-0469(1999)056<3937:TIOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, https://doi.org/10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers, and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 135.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone in-tensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2014: Environmental helicity and its effects on development and intensification of tropical cyclones. J. Atmos. Sci., 71, 43084320, https://doi.org/10.1175/JAS-D-14-0085.1.

    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2016: Tropical cyclone–relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869890, https://doi.org/10.1175/JAS-D-15-0261.1.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr, and C. W. Landsea, 1998: Normalized hurricane damages in the United States: 1925–95. Wea. Forecasting, 13, 621631, https://doi.org/10.1175/1520-0434(1998)013<0621:NHDITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr, J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Muslin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, https://doi.org/10.1002/qj.977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. F. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6, 114119, https://doi.org/10.1175/1520-0442(1993)006<0114:AIRTGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., 2016: Meso‐β‐scale environment for the stationary band complex of vertically sheared tropical cyclones. Quart. J. Roy. Meteor. Soc., 142, 24422451, https://doi.org/10.1002/qj.2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327346, https://doi.org/10.5194/acp-13-327-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016a: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, https://doi.org/10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016b: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part II: Ophelia (2011). J. Atmos. Sci., 73, 15551575, https://doi.org/10.1175/JAS-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 41494173, https://doi.org/10.1175/JAS-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231538, https://doi.org/10.1175/BAMS-87-11-1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799, https://doi.org/10.1175/MWR-D-10-05075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2013a: NOAA’s hurricane intensity forecasting experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859882, https://doi.org/10.1175/BAMS-D-12-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, and S. Lorsolo, 2013b: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, and J. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, J. A. Zawislak, and L. T. Nguyen, 2020: Precipitation processes and vortex alignment during the intensification of a weak tropical cyclone in moderate vertical shear. Mon. Wea. Rev., 148, 18991929, https://doi.org/10.1175/MWR-D-19-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., S. Chen, E. R. Sanabia, and S. R. Jayne, 2020: The air‐sea response during Hurricane Irma’s (2017) rapid intensification over the Amazon‐Orinoco River plume as measured by atmospheric and oceanic observations. J. Geophys. Res. Atmos., 125, e2019JD032368, https://doi.org/10.1029/2019JD032368.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, https://doi.org/10.1175/2009JAS2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, https://doi.org/10.1175/MWR-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, M. DeMaria, and J. L. Vigh, 2018: A 10-year survey of tropical cyclone inner-core lightning bursts and their relationship to intensity change. Wea. Forecasting, 33, 2336, https://doi.org/10.1175/WAF-D-17-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, https://doi.org/10.1175/JAS-D-11-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation–convection in rapidly intensifying tropical cyclones. J. Climate, 28, 87918824, https://doi.org/10.1175/JCLI-D-14-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., H. Jiang, and J. Zawislak, 2017: The relative importance of stratiform and convective rainfall in rapidly intensifying tropical cyclones. Mon. Wea. Rev., 145, 795809, https://doi.org/10.1175/MWR-D-16-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 24872506, https://doi.org/10.1175/1520-0493(1981)109<2487:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, https://doi.org/10.1175/MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and J. Sears, 2014: Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter? Wea. Forecasting, 29, 11691180, https://doi.org/10.1175/WAF-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., R. F. Rogers, and P. D. Reasor, 2018a: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761780, https://doi.org/10.1175/MWR-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., J. A. Zhang, B. Jaimes, and L. K. Shay, 2018b: Downdrafts and the evolution of boundary layer thermodynamics in Hurricane Earl (2010) before and during rapid intensification. Mon. Wea. Rev., 146, 35453565, https://doi.org/10.1175/MWR-D-18-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., J. A. Zhang, B. Jaimes, and L. K. Shay, 2021a: The rapid intensification of Hurricane Michael (2018): Storm structure and the relationship to environmental and air–sea interactions. Mon. Wea. Rev., 149, 245267, https://doi.org/10.1175/MWR-D-20-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., D. S. Nolan, J. A. Zhang, and L. K. Shay, 2021b: The thermodynamic characteristics of downdrafts in tropical cyclones using idealized simulations of different intensities. J. Atmos. Sci., 78, 3503–3524, https://doi.org/10.1175/JAS-D-21-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity. J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, https://doi.org/10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, https://doi.org/10.1175/JAS-D-13-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey III, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and R. F. Rogers, 2019: Effects of parameterized boundary layer structure on hurricane rapid intensification in shear. Mon. Wea. Rev., 147, 853871, https://doi.org/10.1175/MWR-D-18-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, https://doi.org/10.1029/2008GL034374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. Rogers, P. Reasor, E. Uhlhorn, and F. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., J. J. Cione, E. A. Kalina, E. W. Uhlhorn, T. Hock, and J. A. Smith, 2017: Observations of infrared sea surface temperature and air-sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34, 13331349, https://doi.org/10.1175/JTECH-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., J. P. Dunion, and D. S. Nolan, 2020: In situ observations of the diurnal variation in the boundary layer of mature hurricanes. Geophys. Res. Lett., 47, 2019GL086206, https://doi.org/10.1029/2019GL086206.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 38 38 38
Full Text Views 24 24 24
PDF Downloads 22 22 22

The Effects of Environmental Wind Shear Direction on Tropical Cyclone Boundary Layer Thermodynamics and Intensity Change from Multiple Observational Datasets

View More View Less
  • 1 aNOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida
  • | 2 bCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • | 3 cCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 4 dNOAA/Global Systems Laboratory, Boulder, Colorado
Restricted access

Abstract

The relationship between deep-layer environmental wind shear direction and tropical cyclone (TC) boundary layer thermodynamic structures is explored in multiple independent databases. Analyses derived from the tropical cyclone buoy database (TCBD) show that when TCs experience northerly component shear, the 10-m equivalent potential temperature θe tends to be more symmetric than when shear has a southerly component. The primary asymmetry in θe in TCs experiencing southerly component shear is radially outward from 2 times the radius of maximum wind speed, with the left-of-shear quadrants having lower θe by 4–6 K than the right-of-shear quadrants. As with the TCBD, an asymmetric distribution of 10-m θe for TCs experiencing southerly component shear and a symmetric distribution of 10-m θe for TCs experiencing northerly component shear was found using composite observations from dropsondes. These analyses show that differences in the degree of symmetry near the sea surface extend through the depth of the boundary layer. Additionally, mean dropsonde profiles illustrate that TCs experiencing northerly component shear are more potentially unstable between 500- and 1000-m altitude, signaling a more favorable environment for the development of surface-based convection in rainband regions. Analyses from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) database show that subsequent strengthening for TCs in the Atlantic Ocean basin preferentially occurs in northerly component deep-layer environmental wind shear environments whereas subsequent weakening preferentially occurs in southerly component wind shear environments, which further illustrates that the asymmetric distribution of boundary layer thermodynamics is unfavorable for TC intensification. These differences emphasize the impact of deep-layer wind shear direction on TC intensity changes that likely result from the superposition of large-scale advection with the shear-relative asymmetries in TC structure.

Significance Statement

This research investigates how the direction of the winds surrounding the storm impacts the strength of a tropical cyclone. Analyses from this study illustrate that when the winds come from the south the atmospheric boundary layer has a cool and dry side along with a warm and moist side. When the large-scale winds come from the north, temperature and moisture conditions are more uniform throughout the boundary layer. Consequently, results from tropical cyclone climatology show that winds observed to come from the north favor subsequent intensification. These relationships illustrate that tropical cyclone structure and intensity are directly influenced by their surrounding environments and that knowledge of the wind environment could help to improve future forecasts of tropical cyclone intensity change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua B. Wadler, joshua.wadler@noaa.gov

Abstract

The relationship between deep-layer environmental wind shear direction and tropical cyclone (TC) boundary layer thermodynamic structures is explored in multiple independent databases. Analyses derived from the tropical cyclone buoy database (TCBD) show that when TCs experience northerly component shear, the 10-m equivalent potential temperature θe tends to be more symmetric than when shear has a southerly component. The primary asymmetry in θe in TCs experiencing southerly component shear is radially outward from 2 times the radius of maximum wind speed, with the left-of-shear quadrants having lower θe by 4–6 K than the right-of-shear quadrants. As with the TCBD, an asymmetric distribution of 10-m θe for TCs experiencing southerly component shear and a symmetric distribution of 10-m θe for TCs experiencing northerly component shear was found using composite observations from dropsondes. These analyses show that differences in the degree of symmetry near the sea surface extend through the depth of the boundary layer. Additionally, mean dropsonde profiles illustrate that TCs experiencing northerly component shear are more potentially unstable between 500- and 1000-m altitude, signaling a more favorable environment for the development of surface-based convection in rainband regions. Analyses from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) database show that subsequent strengthening for TCs in the Atlantic Ocean basin preferentially occurs in northerly component deep-layer environmental wind shear environments whereas subsequent weakening preferentially occurs in southerly component wind shear environments, which further illustrates that the asymmetric distribution of boundary layer thermodynamics is unfavorable for TC intensification. These differences emphasize the impact of deep-layer wind shear direction on TC intensity changes that likely result from the superposition of large-scale advection with the shear-relative asymmetries in TC structure.

Significance Statement

This research investigates how the direction of the winds surrounding the storm impacts the strength of a tropical cyclone. Analyses from this study illustrate that when the winds come from the south the atmospheric boundary layer has a cool and dry side along with a warm and moist side. When the large-scale winds come from the north, temperature and moisture conditions are more uniform throughout the boundary layer. Consequently, results from tropical cyclone climatology show that winds observed to come from the north favor subsequent intensification. These relationships illustrate that tropical cyclone structure and intensity are directly influenced by their surrounding environments and that knowledge of the wind environment could help to improve future forecasts of tropical cyclone intensity change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua B. Wadler, joshua.wadler@noaa.gov
Save