• Alexander, S. P., and A. Protat, 2018: Cloud properties observed from the surface and by satellite at the northern edge of the Southern Ocean. J. Geophys. Res. Atmos., 123, 443456, https://doi.org/10.1002/2017JD026552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bikos, D., and Coauthors, 2012: Synthetic satellite imagery for realtime high-resolution model evaluation. Wea. Forecasting, 27, 784795, https://doi.org/10.1175/WAF-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, Y., J. Pelon, E. W. Eloranta, K. P. Moran, J. Delanoë, and G. Sèze, 2014: A synergistic analysis of cloud cover and vertical distribution from a-train and ground-based sensors over the high Arctic station Eureka from 2006 to 2010. J. Appl. Meteor. Climatol., 53, 25532570, https://doi.org/10.1175/JAMC-D-14-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., J. L. Dufresne, H. L. Treut, J. J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186, https://doi.org/10.1007/s00382-003-0369-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2003: COAMPS version 3 model description-general theory and equations. Naval Research Laboratory Tech. Note NRL/PU/7500-03448, 143 pp.

  • Cui, W., X. Dong, B. Xi, Z. Feng, and J. Fan, 2020: Can the GPM IMERG final product accurately represent MCSs’ precipitation characteristics over the central and eastern United States? J. Hydrometeor., 21, 3957, https://doi.org/10.1175/JHM-D-19-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001: NAVDAS Source Book 2001: NRL atmospheric variational data assimilation system. Naval Research Laboratory Tech. Note NRL/PU/7530-01-441, 163 pp.

  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418, https://doi.org/10.1002/qj.49710243210.

    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., X. Dong, B. Xi, J. Jiang, and H. Su, 2015: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., 44, 22292247, https://doi.org/10.1007/s00382-014-2158-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, S., R. Marchand, T. Ackerman, L. Donner, J.-C. Golaz, and C. Seman, 2017: Diagnosing cloud biases in the GFDL AM3 model with atmospheric classification. J. Geophys. Res. Atmos., 122, 12 82712 844, https://doi.org/10.1002/2017JD027163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, R., B. Baum, W. Menzel, S. Ackerman, C. Moeller, and J. Spinhirne, 1999: A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing. J. Geophys. Res., 104, 24 54724 555, https://doi.org/10.1029/1999JD900796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., C. Jakob, M. J. Reeder, and J. Haynes, 2011: The three-dimensional distribution of clouds around Southern Hemisphere extratropical cyclones. Geophys. Res. Lett., 38, L21805, https://doi.org/10.1029/2011GL049091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., M. Sengupta, J. F. Dostalek, R. Brummer, and M. DeMaria, 2008: Synthetic satellite imagery for current and future environmental satellites. Int. J. Remote Sens., 29, 43734384, https://doi.org/10.1080/01431160801891820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder atmospheres-extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, https://doi.org/10.1175/BAMS-D-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2019: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA Algorithm Theoretical Basis Doc., version 06, 38 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

  • Jin, D., L. Oreopoulos, and D. Lee, 2016: Regime-based evaluation of cloudiness in CMIP5 models. Climate Dyn., 48, 89112, https://doi.org/10.1007/s00382-016-3064-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., P. Skinner, K. Knopfmeier, E. Mansell, P. Minnis, R. Palikonda, and W. Smith Jr., 2018: Comparison of cloud microphysics schemes in a Warn-On-Forecast system using synthetic satellite objects. Wea. Forecasting, 33, 16811708, https://doi.org/10.1175/WAF-D-18-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15881606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshiro, T., and M. Shiotani, 2013: Relationship between low stratiform cloud amount and estimated inversion strength in the lower troposphere over the global ocean in terms of cloud types. J. Meteor. Soc. Japan, 92, 107120, https://doi.org/10.2151/jmsj.2014-107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuma, P., A. J. McDonald, O. Morgenstern, R. Querel, I. Silber, and C. J. Flynn, 2021: Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0). Geosci. Model Dev., 14, 4372, https://doi.org/10.5194/gmd-14-43-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., J. E. Nachamkin, and D. L. Westphal, 2009: On the improvement of COAMPS weather forecasts using an advanced radiative transfer model. Wea. Forecasting, 24, 286306, https://doi.org/10.1175/2008WAF2222137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahajan, S., and B. Fataniya, 2020: Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst., 6, 251261, https://doi.org/10.1007/s40747-019-00128-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, A. J., and S. Parsons, 2018: A comparison of cloud classification methodologies: Differences between cloud and dynamical regimes. J. Geophys. Res. Atmos., 123, 11 17311 193, https://doi.org/10.1029/2018JD028595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McErlich, C., A. McDonald, A. Schuddeboom, and I. Silber, 2021: Comparing satellite and ground based observations of cloud occurrence over high southern latitude. J. Geophys. Res. Atmos., 126, e2020JD033607, https://doi.org/10.1029/2020JD033607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385399, https://doi.org/10.1007/s00382-009-0694-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and Coauthors, 2014: Model-evaluation tools for three-dimensional cloud verification via spaceborne active sensors. J. Appl. Meteor. Climatol., 53, 21812195, https://doi.org/10.1175/JAMC-D-13-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2021: CERES MODIS cloud product retrievals for edition 4. Part I: Algorithm changes. IEEE Trans. Geosci. Remote Sens., 59, 27442780, https://doi.org/10.1109/TGRS.2020.3008866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., Y. Jin, L. D. Grasso, and K. Richardson, 2017: Using synthetic brightness temperatures to address uncertainties in cloud-top-height verification. J. Appl. Meteor. Climatol., 56, 283296, https://doi.org/10.1175/JAMC-D-16-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2016: The relationship between boundary layer stability and cloud cover in the post-cold-frontal region. J. Climate, 29, 81298149, https://doi.org/10.1175/JCLI-D-15-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., and Coauthors, 2017: Cloud-base height estimation from VIIRS. Part II: A statistical algorithm based on A-train satellite data. J. Atmos. Oceanic Technol., 34, 585598, https://doi.org/10.1175/JTECH-D-16-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and W. Rossow, 2011: The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J. Geophys. Res., 116, D12202, https://doi.org/10.1029/2010JD015472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, and S. Kato, 2016: Radiative effects of global MODIS cloud regimes. J. Geophys. Res. Atmos., 121, 22992317, https://doi.org/10.1002/2015JD024502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., T. J. Greenwald, J. Sieglaff, and H.-L. Huang, 2009: Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations. J. Appl. Meteor. Climatol., 48, 16131626, https://doi.org/10.1175/2009JAMC2142.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A. S. A., and Coauthors, 2014: Reconciling ground-based and space based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456478, https://doi.org/10.1175/JAMC-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall acculations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, https://doi.org/10.1029/2005GL024584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Jr., and Coauthors, 1996: Comparisons of cloud heights derived from satellite, aircraft, surface lidar and LITE data. Proc. Int. Radiation Symp., Fairbanks, AK, Int. Radiation Commission, 603–606.

  • Taylor, P. C., S. Kato, K.-M. Xu, and M. Cai, 2015: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res. Atmos., 120, 12 65612 678, https://doi.org/10.1002/2015JD023520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. Rossow, Y. Zhang, and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 77347746, https://doi.org/10.1175/JCLI-D-13-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., L. W. O’Neill, Q. Jiang, S. P. de Szoeke, X. Hong, H. Jin, W. T. Thomson, and X. Zheng, 2011: A regional real-time forecast of marine boundary layers during VOCALS-Rex. Atmos. Chem. Phys., 11, 421437, https://doi.org/10.5194/acp-11-421-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J. J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, https://doi.org/10.1007/s003820100157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. International Geophysics Series, Vol. 59, Elsevier, 467 pp.

  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157, https://doi.org/10.1007/s00382-008-0443-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and A. Bodas-Salcedo, 2017: A multi-diagnostic approach to cloud evaluation. Geosci. Model Dev., 10, 25472566, https://doi.org/10.5194/gmd-10-2547-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yost, C., P. Minnis, S. Sun-Mack, Y. Chen, and W. L. Smith, 2021: CERES MODIS cloud product retrievals for edition 4—Part II: Comparisons to CloudSat and CALIPSO. IEEE Trans. Geosci. Remote Sens., 59, 3695–3724, https://doi.org/10.1109/TGRS.2020.3015155.

    • Crossref
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, https://doi.org/10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 45 45 0
Full Text Views 233 231 1
PDF Downloads 211 209 2

Classification and Evaluation of Stable and Unstable Cloud Forecasts

View More View Less
  • 1 aNaval Research Laboratory, Monterey, California
  • | 2 bUniversity of Connecticut, Storrs, Connecticut
  • | 3 cDeVine Consulting, Fremont, California
  • | 4 dAmerican Society for Engineering Education, Monterey, California
Restricted access

Abstract

A physics-based cloud identification scheme, originally developed for a machine-learning forecast system, was applied to verify cloud location and coverage bias errors from two years of 6-h forecasts. The routine identifies stable and unstable environments by assessing the potential for buoyant versus stable cloud formation. The efficacy of the scheme is documented by investigating its ability to identify cloud patterns and systematic forecast errors. Results showed that stable cloud forecasts contained widespread, persistent negative cloud cover biases most likely associated with turbulent, radiative, and microphysical feedback processes. In contrast, unstable clouds were better predicted despite being poorly resolved. This suggests that scale aliasing, while energetically problematic, results in less-severe short-term cloud cover errors. This study also evaluated Geostationary Operational Environmental Satellite (GOES) cloud-base retrievals for their effectiveness at identifying regions of lower-tropospheric cloud cover. Retrieved cloud-base heights were sometimes too high with respect to their actual values in regions of deep-layered clouds, resulting in underestimates of the extent of low cloud cover in these areas. Sensitivity experiments indicate that the most accurate cloud-base estimates existed in regions with cloud tops at or below 8 km.

Significance Statement

Cloud forecasts are difficult to verify because the height, depth, and type of the clouds are just as important as the spatial location. Satellite imagery and retrievals are good for verifying location, but these measurements are sometimes uncertain because of obscuration from above. Despite these uncertainties, we can learn a lot about specific forecast errors by tracking general areas of clouds based on their physical forcing mechanisms. We chose to sort by atmospheric stability because buoyant and stable processes are physically very distinct. Studies of this nature exist, but they typically assess mean cloud frequencies without considering spatial and temporal displacements. Here, we address displacement error by assessing the direct overlap between the observed and predicted clouds.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Bankert: Retired.

Corresponding author: Jason E. Nachamkin, jason.nachamkin@nrlmry.navy.mil

Abstract

A physics-based cloud identification scheme, originally developed for a machine-learning forecast system, was applied to verify cloud location and coverage bias errors from two years of 6-h forecasts. The routine identifies stable and unstable environments by assessing the potential for buoyant versus stable cloud formation. The efficacy of the scheme is documented by investigating its ability to identify cloud patterns and systematic forecast errors. Results showed that stable cloud forecasts contained widespread, persistent negative cloud cover biases most likely associated with turbulent, radiative, and microphysical feedback processes. In contrast, unstable clouds were better predicted despite being poorly resolved. This suggests that scale aliasing, while energetically problematic, results in less-severe short-term cloud cover errors. This study also evaluated Geostationary Operational Environmental Satellite (GOES) cloud-base retrievals for their effectiveness at identifying regions of lower-tropospheric cloud cover. Retrieved cloud-base heights were sometimes too high with respect to their actual values in regions of deep-layered clouds, resulting in underestimates of the extent of low cloud cover in these areas. Sensitivity experiments indicate that the most accurate cloud-base estimates existed in regions with cloud tops at or below 8 km.

Significance Statement

Cloud forecasts are difficult to verify because the height, depth, and type of the clouds are just as important as the spatial location. Satellite imagery and retrievals are good for verifying location, but these measurements are sometimes uncertain because of obscuration from above. Despite these uncertainties, we can learn a lot about specific forecast errors by tracking general areas of clouds based on their physical forcing mechanisms. We chose to sort by atmospheric stability because buoyant and stable processes are physically very distinct. Studies of this nature exist, but they typically assess mean cloud frequencies without considering spatial and temporal displacements. Here, we address displacement error by assessing the direct overlap between the observed and predicted clouds.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Bankert: Retired.

Corresponding author: Jason E. Nachamkin, jason.nachamkin@nrlmry.navy.mil
Save