• Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, https://doi.org/10.1175/2007JAMC1611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and S. R. Stewart, 2013: Atlantic hurricane season of 2011. Mon. Wea. Rev., 141, 25772596, https://doi.org/10.1175/MWR-D-12-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, https://doi.org/10.1175/2010MWR3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, https://doi.org/10.1175/MWR-D-12-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., I. M. Moroz, and T. N. Palmer, 2015: Stochastic and perturbed parameter representations of model uncertainty in convection parameterization. J. Atmos. Sci., 72, 25252544, https://doi.org/10.1175/JAS-D-14-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., S.-J. Lock, I. M. Moroz, and T. N. Palmer, 2017: Introducing independent patterns into the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme. Quart. J. Roy. Meteor. Soc., 143, 21682181, https://doi.org/10.1002/qj.3075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, J., 2017: Torrential rain floods northern areas. Taipei Times, 3 June 2017, http://www.taipeitimes.com/News/front/archives/2017/06/03/2003671808.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dottori, F., P. Salamon, A. Bianchi, L. Alfieri, F. A. Hirpa, and L. Feyen, 2016: Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour., 94, 87102, https://doi.org/10.1016/j.advwatres.2016.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dougherty, E., and K. L. Rasmussen, 2020: Changes in future flash flood–producing storms in the United States. J. Hydrometeor., 21, 22212236, https://doi.org/10.1175/JHM-D-20-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, National Center for Atmospheric Research, 4950.

    • Search Google Scholar
    • Export Citation
  • EMC, 2020: Global ensemble forecast system. NCEP Environmental Modeling Center (EMC), accessed 28 October 2020, https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gefs.php.

    • Search Google Scholar
    • Export Citation
  • Evans, C., D. F. Van Dyke, and T. Lericos, 2014: How do forecasters utilize output from a convection-permitting ensemble forecast system? Case study of a high-impact precipitation event. Wea. Forecasting, 29, 466486, https://doi.org/10.1175/WAF-D-13-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., 70, 91111, https://doi.org/10.1175/JAS-D-12-018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 43214332, https://doi.org/10.1175/JAS-D-13-0378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., S. Saslo, and R. Grumm, 2017: Assessing the ensemble predictability of precipitation forecasts for the January 2015 and 2016 East Coast winter storms. Wea. Forecasting, 32, 10571078, https://doi.org/10.1175/WAF-D-16-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., P. Salamon, L. Alfieri, J. T. Pozo, E. Zsoter, and F. Pappenberger, 2016: The effect of reference climatology on global flood forecasting. J. Hydrometeor., 17, 11311145, https://doi.org/10.1175/JHM-D-15-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., H. E. Brooks, and R. S. Schumacher, 2013: Spatial and temporal characteristics of heavy hourly rainfall in the United States. Mon. Wea. Rev., 141, 45644575, https://doi.org/10.1175/MWR-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howarth, M. E., C. D. Thorncroft, and L. F. Bosart, 2019: Changes in extreme precipitation in the northeast United States: 1979–2014. J. Hydrometeor., 20, 673689, https://doi.org/10.1175/JHM-D-18-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, https://doi.org/10.1175/2009MWR3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., and Coauthors, 2017: A performance comparison between multiphysics and stochastic approaches within a North American RAP ensemble. Mon. Wea. Rev., 145, 11611179, https://doi.org/10.1175/MWR-D-16-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32, 2559, https://doi.org/10.1175/1520-0469(1975)032<0025:BAOATC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 23152339, https://doi.org/10.1002/qj.3094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupo, K. M., R. D. Torn, and S.-C. Yang, 2020: Evaluation of stochastic perturbed parameterization tendencies on convective-permitting ensemble forecasts of heavy rainfall events in New York and Taiwan. Wea. Forecasting, 35, 524, https://doi.org/10.1175/WAF-D-19-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in the Midlatitudes. Wiley-Blackwell, 407 pp.

  • NCEI, 2020: Billion-dollar weather and climate disasters: Events. Accessed 27 January 2020, https://www.ncdc.noaa.gov/billions/events/US/2011.

    • Search Google Scholar
    • Export Citation
  • Ollinaho, P., and Coauthors, 2017: Towards process-level representation of model uncertainties: Stochastically perturbed parameterizations in the ECMWF ensemble. Quart. J. Roy. Meteor. Soc., 143, 408422, https://doi.org/10.1002/qj.2931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 44 pp., http://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model- uncertainty.pdf.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and Coauthors, 2017: The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, X., S. Wang, and J. Min, 2018: The impact of a stochastically perturbing microphysics scheme on an idealized supercell storm. Mon. Wea. Rev., 146, 95118, https://doi.org/10.1175/MWR-D-17-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, https://doi.org/10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, https://doi.org/10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2011: Ensemble-based analysis of factors leading to the development of a multiday warm-season heavy rain event. Mon. Wea. Rev., 139, 30163035, https://doi.org/10.1175/MWR-D-10-05022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 25072524, https://doi.org/10.1175/JAS-D-14-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, https://doi.org/10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivillo, J. K., J. E. Ahlquist, and Z. Toth, 1997: An ensemble forecasting primer. Wea. Forecasting, 12, 809818, https://doi.org/10.1175/1520-0434(1997)012<0809:AEFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137, https://doi.org/10.1007/s00703-001-0594-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Albuquerque, NM, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, C.-C., Y.-L. Chen, C.-S. Chen, P.-L. Lin, and P.-H. Lin, 2014: A comparison of two heavy rainfall events during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX) 2008. Mon. Wea. Rev., 142, 24362463, https://doi.org/10.1175/MWR-D-13-00293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., R. Goska, J. A. Smith, and G. A. Vecchi, 2014: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, https://doi.org/10.1175/BAMS-D-13-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Academic Press, 483.

  • Wastl, C., Y. Wang, A. Atencia, and C. Wittmann, 2019: A hybrid stochastically perturbed parametrization scheme in a convection-permitting ensemble. Mon. Wea. Rev., 147, 22172230, https://doi.org/10.1175/MWR-D-18-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C. Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 25552574, https://doi.org/10.1175/MWR-D-11-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen, 2014: Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 41394163, https://doi.org/10.1175/MWR-D-13-00275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 236 236 0
Full Text Views 66 66 1
PDF Downloads 93 93 1

Process-Based Evaluation of Stochastic Perturbed Microphysics Parameterization Tendencies on Ensemble Forecasts of Heavy Rainfall Events

View More View Less
  • 1 aDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
  • | 2 bDepartment of Atmospheric Sciences, National Central University, JhongLi, Taiwan
Restricted access

Abstract

Stochastic model error schemes, such as the stochastic perturbed parameterization tendencies (SPPT) and independent SPPT (iSPPT) schemes, have become an increasingly accepted method to represent model error associated with uncertain subgrid-scale processes in ensemble prediction systems (EPSs). While much of the current literature focuses on the effects of these schemes on forecast skill, this research examines the physical processes by which iSPPT perturbations to the microphysics parameterization scheme yield variability in ensemble rainfall forecasts. Members of three 120-member Weather Research and Forecasting (WRF) Model ensemble case studies, including two distinct heavy rain events over Taiwan and one over the northeastern United States, are ranked according to an area-averaged accumulated rainfall metric in order to highlight differences between high- and low-precipitation forecasts. In each case, high-precipitation members are characterized by a damping of the microphysics water vapor and temperature tendencies over the region of heaviest rainfall, while the opposite is true for low-precipitation members. Physically, the perturbations to microphysics tendencies have the greatest impact at the cloud level and act to modify precipitation efficiency. To this end, the damping of tendencies in high-precipitation forecasts suppresses both the loss of water vapor due to condensation and the corresponding latent heat release, leading to grid-scale supersaturation. Conversely, amplified tendencies in low-precipitation forecasts yield both drying and increased positive buoyancy within clouds.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Lupo’s current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author: Kevin M. Lupo, klupo@ucar.edu

Abstract

Stochastic model error schemes, such as the stochastic perturbed parameterization tendencies (SPPT) and independent SPPT (iSPPT) schemes, have become an increasingly accepted method to represent model error associated with uncertain subgrid-scale processes in ensemble prediction systems (EPSs). While much of the current literature focuses on the effects of these schemes on forecast skill, this research examines the physical processes by which iSPPT perturbations to the microphysics parameterization scheme yield variability in ensemble rainfall forecasts. Members of three 120-member Weather Research and Forecasting (WRF) Model ensemble case studies, including two distinct heavy rain events over Taiwan and one over the northeastern United States, are ranked according to an area-averaged accumulated rainfall metric in order to highlight differences between high- and low-precipitation forecasts. In each case, high-precipitation members are characterized by a damping of the microphysics water vapor and temperature tendencies over the region of heaviest rainfall, while the opposite is true for low-precipitation members. Physically, the perturbations to microphysics tendencies have the greatest impact at the cloud level and act to modify precipitation efficiency. To this end, the damping of tendencies in high-precipitation forecasts suppresses both the loss of water vapor due to condensation and the corresponding latent heat release, leading to grid-scale supersaturation. Conversely, amplified tendencies in low-precipitation forecasts yield both drying and increased positive buoyancy within clouds.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Lupo’s current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author: Kevin M. Lupo, klupo@ucar.edu
Save