• Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, https://doi.org/10.1175/MWR-D-12-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alcott, T. I., W. J. Steenburgh, and N. F. Laird, 2012: Great Salt Lake–effect precipitation: Observed frequency, characteristics, and environmental factors. Wea. Forecasting, 27, 954971, https://doi.org/10.1175/WAF-D-12-00016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, T., and S. Nilsson, 1990: Topographically inducted convective snowbands over the Baltic Sea and their precipitation distribution. Wea. Forecasting, 5, 299312, https://doi.org/10.1175/1520-0434(1990)005<0299:TICSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, T., and N. Gustafsson, 1994: Coast of departure and coast of arrival: Two important concepts for the formation and structure of convective snowbands over seas and lakes. Mon. Wea. Rev., 122, 10361049, https://doi.org/10.1175/1520-0493(1994)122<1036:CODACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T., 1988: Meso-scale features of heavy snowfalls in Japan Sea coastal regions of Japan (in Japanese). Tenki, 35, 156161.

  • Bergmaier, P. T., B. Geerts, L. S. Campbell, and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Dynamics of the secondary circulation. Mon. Wea. Rev., 145, 24372459, https://doi.org/10.1175/MWR-D-16-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, S., and B. Walter, 1988: Comma cloud development and associated rapid cyclogenesis over the Gulf of Alaska: A case study using aircraft and operational data. Mon. Wea. Rev., 116, 11031123, https://doi.org/10.1175/1520-0493(1988)116<1103:CCDAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 24612478, https://doi.org/10.1175/MWR-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., W. J. Steenburgh, Y. Yamada, M. Kawashima, and Y. Fujiyoshi, 2018: Influences of orography and coastal geometry on a transverse-mode sea-effect snowstorm over Hokkaido Island, Japan. Mon. Wea. Rev., 146, 22012220, https://doi.org/10.1175/MWR-D-17-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF Model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed 20 March 2019, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview; https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., and Coauthors, 2004: Winter marine atmospheric conditions over the Japan Sea. J. Geophys. Res., 109, C12011, https://doi.org/10.1029/2001JC001197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eito, H., T. Kato, M. Yoshizaki, and A. Adachi, 2005: Numerical simulation of the quasi-stationary snowband observed over the southern coastal area of the Sea of Japan on 16 January 2001. J. Meteor. Soc. Japan, 83, 551576, https://doi.org/10.2151/jmsj.83.551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eito, H., M. Murakami, C. Muroi, T. Kato, S. Hayashi, and H. Kuroiwa, 2010: The structure and formation mechanism of transversal cloud bands associated with the Japan-Sea polar-airmass convergence zone. J. Meteor. Soc. Japan, 88, 625648, https://doi.org/10.2151/jmsj.2010-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endoh, T., K. Hozumi, and C. Magono, 1984: Formation mechanism of a notable cloud system that causes heavy snowfall and a tentative prediction of its behavior. Natl. Disaster Sci., 6, 3142.

    • Search Google Scholar
    • Export Citation
  • Estoque, M. A., and K. Ninomiya, 1976: Numerical simulation of Japan Sea effect snowfall. Tellus, 28, 243253, https://doi.org/10.3402/tellusa.v28i3.10285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Føre, I., J. E. Kristjánsson, E. W. Kolstad, T. J. Bracegirdle, Ø. Saetra, and B. Røsting, 2012: A ‘hurricane‐like’ polar low fueled by sensible heat flux: High‐resolution numerical simulations. Quart. J. Roy. Meteor. Soc., 138, 13081324, https://doi.org/10.1002/qj.1876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., H. Niino, R. Kimura, and T. Kato, 2004: A polar low over the Japan Sea on 21 January 1997. Part I: Observational analysis. Mon. Wea. Rev., 132, 15371551, https://doi.org/10.1175/1520-0493(2004)132<1537:APLOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gowan, T. M., 2019: Trajectories. Personal GitHub page, accessed 9 October 2019, https://github.com/tomgowan/trajectories.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Higuchi, K., 1963: The band structure of snowfalls. J. Meteor. Soc. Japan, 41, 5370, https://doi.org/10.2151/jmsj1923.41.1_53.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hozumi, K., and C. Magono, 1984: The cloud structure of convergent cloud bands over the Japan Sea in winter monsoon period. J. Meteor. Soc. Japan, 62, 522533, https://doi.org/10.2151/jmsj1965.62.3_522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamoto, T. S., S. Miyazawa, and K. Fuj, 1963: Heavy snowfalls caused by the Hokuriku Front (in Japanese). Kishokenkyu Note, 14, 5670.

    • Search Google Scholar
    • Export Citation
  • Kawashima, M., and Y. Fujiyoshi, 2005: Shear instability wave along a snowband: Instability structure, evolution, and energetics derived from dual-Doppler radar data. J. Atmos. Sci., 62, 351370, https://doi.org/10.1175/JAS-3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindap, T., 2010: A severe sea-effect snow episode over the city of Istanbul. Nat. Hazards, 54, 707723, https://doi.org/10.1007/s11069-009-9496-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-effect Systems (OWLeS) field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, https://doi.org/10.1175/BAMS-D-15-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1992: Thermal structure and airflow in a model simulation of an occluded marine cyclone. Mon. Wea. Rev., 120, 22802297, https://doi.org/10.1175/1520-0493(1992)120<2280:TSAAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, K., M. Murakami, N. Orikasa, M. Hoshimoto, and Y. Tanaka, 2005: Observations of quasi-stationary and shallow orographic snow clouds: Spatial distributions of supercooled liquid water and snow particles. Mon. Wea. Rev., 133, 743751, https://doi.org/10.1175/MWR2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyodo News, 2018: Gallery: Heavy snow in central Japan. Accessed 7 September 2021, https://english.kyodonews.net/news/2018/02/b399959683d7-gallery-heavy-snow-in-central-japan.html.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. R. Kristovich, and J. E. Walsh, 2003: Idealized model simulations examining the mesoscale structure of winter lake-effect circulations. Mon. Wea. Rev., 131, 206221, https://doi.org/10.1175/1520-0493(2003)131<0206:IMSETM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., J. Desrochers, and M. Payer, 2009: Climatology of lake-effect precipitation events over Lake Champlain. J. Appl. Meteor. Climatol, 48, 232250, https://doi.org/10.1175/2008JAMC1923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., 1971: On the localization phenomena of snowfall. J. Meteor. Soc. Japan, 49, 824835, https://doi.org/10.2151/jmsj1965.49A.0_824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., K. Kikuchi, T. Kimura, S. Tazawa, and T. Kasai, 1966: A study on the snowfall in the winter monsoon season in Hokkaido with special reference to low land snowfall. J. Fac. Sci. Hokkaido Univ. Ser., 11, 287308.

    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015a: Impact of microphysics parameterizations on simulations of the 27 October 2010 Great Salt Lake effect snowstorm. Wea. Forecasting, 30, 136152, https://doi.org/10.1175/WAF-D-14-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015b: Capabilities and limitations of convection-permitting WRF simulations of lake-effect systems over the Great Salt Lake. Wea. Forecasting, 30, 17111731, https://doi.org/10.1175/WAF-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miltenberger, A. K., S. Pfahl, and H. Wernli, 2013: An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO. Geosci. Model Dev., 6, 19892004, https://doi.org/10.5194/gmd-6-1989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitnik, L. M., 1992: Mesoscale coherent structures in the surface wind field during cold air outbreaks over the Far Eastern seas from the satellite side looking radar. La Mer, 30, 287296.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and B. F. Farrell, 1992: Polar low dynamics. J. Atmos. Sci., 49, 24842505, https://doi.org/10.1175/1520-0469(1992)049<2484:PLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., 2019: Inner structures of snow clouds over the Sea of Japan observed by instrumented aircraft: A review. J. Meteor. Soc. Japan, 97, 538, https://doi.org/10.2151/jmsj.2019-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., 1987: On the structure of a convergent cloud band over the Japan Sea in winter; a prediction experiment. J. Meteor. Soc. Japan, 65, 871883, https://doi.org/10.2151/jmsj1965.65.6_871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., 1991: Further numerical study on the formation of the convergent cloud band over the Japan Sea in winter. J. Meteor. Soc. Japan, 69, 419428, https://doi.org/10.2151/jmsj1965.69.3_419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., 1992: Modeling case study of the Japan-Sea convergent cloud band in a varying large-scale environment. J. Meteor. Soc. Japan, 70, 649671, https://doi.org/10.2151/jmsj1965.70.1B_649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., 1993: Meso-β-scale vortices developing along the Japan-Sea polar-airmass convergence zone (JPCZ) cloud band: Numerical simulation. J. Meteor. Soc. Japan, 71, 4357, https://doi.org/10.2151/jmsj1965.71.1_43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., M. Ikawa, S. Yoshizumi, and T. Yoshida, 1986: On the formation of a convergent cloud band over the Japan Sea in winter; numerical experiments. J. Meteor. Soc. Japan, 64, 841855, https://doi.org/10.2151/jmsj1965.64.6_841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., and T. Endoh, 1995: Observation of snowfall and airflow over a low mountain barrier. J. Meteor. Soc. Japan, 73, 183199, https://doi.org/10.2151/jmsj1965.73.2_183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., K. Iwanami, R. Misumi, S. G. Park, and T. Kobayashi, 2005: A classification of snow clouds by Doppler radar observations at Nagaoka, Japan. SOLA, 1, 161164, https://doi.org/10.2151/sola.2005-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., and Coauthors, 2012: A Snow Disaster Forecasting System (SDFS) constructed from field observations and laboratory experiments. Cold Reg. Sci. Technol., 70, 5361, https://doi.org/10.1016/j.coldregions.2011.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2015: NCEP GFS 0.25 degree global forecast grids historical archive. Dept. of Commerce/NOAA/NWS/NCEP, Research Data Archive at the National Center for Atmospheric Research Computational and Information Systems Laboratory, accessed 15 August 2018, https://doi.org/10.5065/D65D8PWK.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, https://doi.org/10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1989: Polar/comma-cloud lows over the Japan Sea and the northwestern Pacific in winter. J. Meteor. Soc. Japan, 67, 8397, https://doi.org/10.2151/jmsj1965.67.1_83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Vaughan, and D. M. Schultz, 2013: Snowbands over the English Channel and Irish Sea during cold-air outbreaks. Quart. J. Roy. Meteor. Soc., 139, 17471761, https://doi.org/10.1002/qj.2079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., 1991: Vortex over the Sea of Japan in winter (in Japanese). Kisho, 35, 3234.

  • Ohigashi, T., and K. Tsuboki, 2007: Shift and intensification processes of the Japan-Sea polar-airmass convergence zone associated with the passage of a mid-tropospheric cold core. J. Meteor. Soc. Japan, 85, 633662, https://doi.org/10.2151/jmsj.85.633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okabayashi, T., 1969: Photographs of heavy snowfall on the Japan Sea side on Jan. 2, 1969 (in Japanese). Tenki, 16, 7980.

  • Okabayashi, T., and M. Satomi, 1971: A study on the snowfall and its original clouds by the meteorological radar and satellite (Part I) (in Japanese). Tenki, 18, 573581.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., Jr., and R. R. Braham Jr., 1981: The role of the winter land breeze in the formation of Great Lake snow storms. Bull. Amer. Meteor. Soc., 62, 482491, https://doi.org/10.1175/1520-0477(1981)062<0482:TROTWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and M. Lystad, 1987: The Norwegian Polar Lows Project: A summary of the International Conference on Polar Lows, 20–23 May 1986, Oslo, Norway. Bull. Amer. Meteor. Soc., 68, 801816.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp., https://doi.org/10.1017/CBO9780511524974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1979: Cyclogenesis in polar airstreams. Mon. Wea. Rev., 107, 3852, https://doi.org/10.1175/1520-0493(1979)107<0038:CIPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., M. Murakami, T. Matsuo, and H. Mizuno, 1996: Sensitivity experiments on the orographic snowfall over the mountainous region of northern Japan. J. Meteor. Soc. Japan, 74, 797813, https://doi.org/10.2151/jmsj1965.74.6_797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardie, J. M., and T. T. Warner, 1985: A numerical study of the development mechanisms of polar lows. Tellus, 37A, 460477, https://doi.org/10.1111/j.1600-0870.1985.tb00444.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., A. Wada, K. Yamazaki, and N. Kitabatake, 2014: Roles of an upper-level cold vortex and low-level baroclinicity in the development of polar lows over the Sea of Japan. Tellus, 66A, 24694, https://doi.org/10.3402/tellusa.v66.24694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, Y., R. Kawamura, T. Kawano, and H. Shimizu, 2021: Dynamical role of the Changbai Mountains and the Korean Peninsula in the wintertime quasi-stationary convergence zone over the Sea of Japan. Int. J. Climatol., 41 (Suppl. 1), E602E615, https://doi.org/10.1002/joc.6713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split non-hydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SSEC, 2018, University of Wisconsin–Madison Space Science and Engineering Center (SSEC) Multi-format Client-agnostic File Extraction Through Contextual HTTP (MCFETCH). Accessed 14 December 2019, https://mcfetch.ssec.wisc.edu/.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2014: Secrets of the Greatest Snow on Earth. Utah State University Press, 186 pp.

  • Steenburgh, W. J., and L. S. Campbell, 2017: The OWLeS IOP2b lake-effect snowstorm: Shoreline geometry and the mesoscale forcing of precipitation. Mon. Wea. Rev., 145, 24212436, https://doi.org/10.1175/MWR-D-16-0460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and S. Nakai, 2020: Perspectives on sea- and lake-effect precipitation from Japan’s “Gosetsu Chitai”. Bull. Amer. Meteor. Soc., 101 (1), E58E72, https://doi.org/10.1175/BAMS-D-18-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709727, https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., and Coauthors, 2013: Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel–lake-effect storms by the Doppler on Wheels. Mon. Wea. Rev., 141, 28212840, https://doi.org/10.1175/MWR-D-12-00226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, H. G., N. H. Ishizaki, H. Kawase, M. Hara, T. Yoshikane, X. Ma, and F. Kimura, 2013: Potential impact of sea surface temperature on winter precipitation over the Sea of Japan side of Japan: A regional climate modeling study. J. Meteor. Soc. Japan, 91, 471488, https://doi.org/10.2151/jmsj.2013-404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955114, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., and G. Wakahama, 1992: Mesoscale cyclogenesis in winter monsoon air streams: Quasi-geostrophic baroclinic instability as a mechanism of the cyclogenesis off the west coast of Hokkaido Island, Japan. J. Meteor. Soc. Japan, 70, 7793, https://doi.org/10.2151/jmsj1965.70.1_77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., and T. Asai, 2004: The multi-scale structure and development mechanism of mesoscale cyclones over the Sea of Japan in winter. J. Meteor. Soc. Japan, 82, 597621, https://doi.org/10.2151/jmsj.2004.597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, K., and T. Fujita, 1967: A satellite meteorological study of evaporation and cloud formation over the western Pacific under the influence of the winter monsoon. J. Meteor. Soc. Japan, 45, 232250, https://doi.org/10.2151/jmsj1965.45.3_232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uemura, H., 1980: On the structure and formation of the disturbances causing a heavy snowfall over the coastal area of the Sea of Japan under the winter monsoon (in Japanese). Tenki, 27, 3344.

    • Search Google Scholar
    • Export Citation
  • Umek, L., and A. Gohm, 2016: Lake and orographic effects on a snowstorm at Lake Constance. Mon. Wea. Rev., 144, 46874707, https://doi.org/10.1175/MWR-D-16-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • University of Wyoming, 2018: University of Wyoming Department of Atmospheric Sciences Upper Air Sounding Data. Accessed 15 October 2018, http://weather.uwyo.edu/upperair/sounding.html.

    • Search Google Scholar
    • Export Citation
  • Veals, P. G., and W. J. Steenburgh, 2015: Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Mon. Wea. Rev., 143, 35913609, https://doi.org/10.1175/MWR-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., W. J. Steenburgh, S. Nakai, and S. Yamaguchi, 2019: Factors affecting the inland and orographic enhancement of sea-effect snowfall in the Hokuriku Region of Japan. Mon. Wea. Rev., 147, 31213143, https://doi.org/10.1175/MWR-D-19-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., W. J. Steenburgh, S. Nakai, and S. Yamaguchi, 2020: Intrastorm variability of the inland and orographic enhancement of a sea-effect snowstorm in the Hokuriku Region of Japan. Mon. Wea. Rev., 148, 25272548, https://doi.org/10.1175/MWR-D-19-0390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S. I., H. Niino, and W. Yanase, 2016: Climatology of polar mesocyclones over the Sea of Japan using a new objective tracking method. Mon. Wea. Rev., 144, 25032515, https://doi.org/10.1175/MWR-D-15-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S. I., H. Niino, and W. Yanase, 2018: Composite analysis of polar mesocyclones over the western part of the Sea of Japan. Mon. Wea. Rev., 146, 9851004, https://doi.org/10.1175/MWR-D-17-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, T. K., W. J. Steenburgh, and G. G. Mace, 2019: Characteristics of sea-effect clouds and precipitation over the Sea of Japan region as observed by A-Train satellites. J. Geophys. Res. Atmos., 124, 13221335, https://doi.org/10.1029/2018JD029586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, K., and C. Magono, 1974: On the vortical disturbances in small scale accompanied with the mesoscale front in Japan Sea in winter season (in Japanese). Tenki, 21, 8388.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, S., O. Abe, S. Nakai, and A. Sato, 2011: Recent fluctuations of meteorological and snow conditions in Japanese mountains. Ann. Glaciol., 52, 209215, https://doi.org/10.3189/172756411797252266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Niino, and K. Saito, 2002: High-resolution numerical simulation of a polar low. Geophys. Res. Lett., 29, 3-13-4, https://doi.org/10.1029/2002GL014736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Niino, S. Watanabe, K. Hodges, M. Zahn, T. Spengler, and I. Gurvich, 2016: Climatology of polar lows over the Sea of Japan using the JRA-55 reanalysis. J. Climate, 29, 419437, https://doi.org/10.1175/JCLI-D-15-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshihara, H., M. Kawashima, K. I. Arai, J. Inoue, and Y. Fujiyoshi, 2004: Doppler radar study on the successive development of snowbands at a convergence line near the coastal region of Hokuriku District. J. Meteor. Soc. Japan, 82, 10571079, https://doi.org/10.2151/jmsj.2004.1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 16 16 16
Full Text Views 13 13 13
PDF Downloads 6 6 6

Formation, Thermodynamic Structure, and Airflow of a Japan Sea Polar Airmass Convergence Zone

View More View Less
  • 1 aDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
Restricted access

Abstract

The Sea of Japan (SOJ) coast and adjoining orography of central Honshu, Japan, receive substantial snowfall each winter. A frequent contributor during cold-air outbreaks (CAOs) is the Japan Sea polar airmass convergence zone (JPCZ), which forms downstream of the highland areas of the Korean Peninsula (i.e., the Korean Highlands), extends southeastward to Honshu, and generates a mesoscale band of precipitation. Mesoscale polar vortices (MPVs) ranging in horizontal scale from tens (i.e., meso-β-scale cyclones) to several hundreds of kilometers (i.e., “polar lows”) are also common during CAOs and often interact with the JPCZ. Here we use satellite imagery and Weather Research and Forecasting Model simulations to examine the formation, thermodynamic structure, and airflow of a JPCZ that formed in the wake of an MPV during a CAO from 2 to 7 February 2018. The MPV and its associated warm seclusion and bent-back front developed in a locally warm, convergent, and convective environment over the SOJ near the base of the Korean Peninsula. The nascent JPCZ was structurally continuous with the bent-back front and lengthened as the MPV migrated southeastward. Trajectories illustrate how air–sea interactions and flow splitting around the Korean Highlands and channeling through low passes and valleys along the Asian coast affect the formation and thermodynamic structure of the JPCZ. Contrasts in airmass origin and thermodynamic modification over the SOJ affect the cross-JPCZ temperature gradient, which reverses in sign along the JPCZ from the Asian coast to Honshu. These results provide new insights into the thermodynamic structure of the JPCZ, which is an important contributor to hazardous weather over Japan.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: W. James Steenburgh, jim.steenburgh@utah.edu

Abstract

The Sea of Japan (SOJ) coast and adjoining orography of central Honshu, Japan, receive substantial snowfall each winter. A frequent contributor during cold-air outbreaks (CAOs) is the Japan Sea polar airmass convergence zone (JPCZ), which forms downstream of the highland areas of the Korean Peninsula (i.e., the Korean Highlands), extends southeastward to Honshu, and generates a mesoscale band of precipitation. Mesoscale polar vortices (MPVs) ranging in horizontal scale from tens (i.e., meso-β-scale cyclones) to several hundreds of kilometers (i.e., “polar lows”) are also common during CAOs and often interact with the JPCZ. Here we use satellite imagery and Weather Research and Forecasting Model simulations to examine the formation, thermodynamic structure, and airflow of a JPCZ that formed in the wake of an MPV during a CAO from 2 to 7 February 2018. The MPV and its associated warm seclusion and bent-back front developed in a locally warm, convergent, and convective environment over the SOJ near the base of the Korean Peninsula. The nascent JPCZ was structurally continuous with the bent-back front and lengthened as the MPV migrated southeastward. Trajectories illustrate how air–sea interactions and flow splitting around the Korean Highlands and channeling through low passes and valleys along the Asian coast affect the formation and thermodynamic structure of the JPCZ. Contrasts in airmass origin and thermodynamic modification over the SOJ affect the cross-JPCZ temperature gradient, which reverses in sign along the JPCZ from the Asian coast to Honshu. These results provide new insights into the thermodynamic structure of the JPCZ, which is an important contributor to hazardous weather over Japan.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: W. James Steenburgh, jim.steenburgh@utah.edu
Save