• Aircraft Operations Center, 2016: Tropical cyclone operations: Challenges in 2015: New products and services planned for 2016 and 2017. NOAA Office of Marine and Aviation Operations, accessed 29 November 2020, https://www.ofcm.gov/meetings/TCORF/ihc16/2016presentations.html.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., 2019: nsf-lrose/lrose-blaze: lrose-blaze-20190105. Accessed 6 January 2019, https://doi.org/10.5281/ZENODO.2532758.

  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., W.-C. Lee, C. A. Wolff, and H. Cai, 2013: A Solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, https://doi.org/10.1175/JAMC-D-12-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • , Beven, J. L., R. Berg, and A. Hagen, 2019: National Hurricane Center tropical cyclone report: Hurricane Michael (7–11 October 2018). NHC Tech. Rep AL142018, 86 pp., https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf.

    • Search Google Scholar
    • Export Citation
  • Boehm, A. M., and M. M. Bell, 2021: Retrieved thermodynamic structure of Hurricane Rita (2005) from airborne multi-Doppler radar data. J. Atmos. Sci., 78, 15831605, https://doi.org/10.1175/JAS-D-20-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, H., W.-C. Lee, M. M. Bell, C. A. Wolff, X. Tang, and F. Roux, 2018: A generalized navigation correction method for airborne Doppler radar data. J. Atmos. Oceanic Technol., 35, 19992017, https://doi.org/10.1175/JTECH-D-18-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 19131922, https://doi.org/10.1175/WAF-D-20-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, T.-Y., M. M. Bell, W.-C. Lee, and A. J. DesRosiers, 2020: Polygonal eyewall asymmetries during the rapid intensification of Hurricane Michael (2018). Geophys. Res. Lett., 47, e2020GL087919, https://doi.org/10.1029/2020GL087919.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DesRosiers, A. J., 2020: Airborne radar quality control and analysis of the rapid intensification of Hurricane Michael (2018). M.S. thesis, Department of Atmospheric Science, Colorado State University, 50 pp.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636, https://doi.org/10.1175/2011JAS3715.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Nor., 5, 1960.

  • Fischer, M. S., B. H. Tang, K. L. Corbosiero, and C. M. Rozoff, 2018: Normalized convective characteristics of tropical cyclone rapid intensification events in the North Atlantic and eastern North Pacific. Mon. Wea. Rev., 146, 11331155, https://doi.org/10.1175/MWR-D-17-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foerster, A. M., and M. M. Bell, 2017: Thermodynamic retrieval in rapidly rotating vortices from multiple-Doppler radar data. J. Atmos. Oceanic Technol., 34, 23532374, https://doi.org/10.1175/JTECH-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., J. S. Griffin, P. P. Dodge, and N. F. Griffin, 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meter. Soc., 422423.

    • Search Google Scholar
    • Export Citation
  • Green, A., S. G. Gopalakrishnan, G. J. Alaka Jr., and S. Chia, 2021: Understanding the role of mean and eddy momentum transport in the rapid intensification of Hurricane Irma (2017) and Hurricane Michael (2018). Atmosphere, 12, 492, https://doi.org/10.3390/atmos12040492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., and R. E. Hart, 2013: Hurricane eyewall slope as determined from airborne radar reflectivity data: Composites and case studies. Wea. Forecasting, 28, 368386, https://doi.org/10.1175/WAF-D-12-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., X. Zhang, S. Gopalakrishnan, W. Ramstrom, F. Marks, and J. A. Zhang, 2020: High-resolution ensemble HFV3 forecasts of Hurricane Michael (2018): Rapid intensification in shear. Mon. Wea. Rev., 148, 20092032, https://doi.org/10.1175/MWR-D-19-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, https://doi.org/10.1175/2010MWR3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschberg, P. A., and J. M. Fritsch, 1993: On understanding height tendency. Mon. Wea. Rev., 121, 26462661, https://doi.org/10.1175/1520-0493(1993)121<2646:OUHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, https://doi.org/10.1175/2009MWR2989.1.

  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, https://doi.org/10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-D., and C.-C. Wu, 2018: The role of polygonal eyewalls in rapid intensification of Typhoon Megi. J. Atmos. Sci., 75, 41754199, https://doi.org/10.1175/JAS-D-18-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., and A. Aksoy, 2012: Wavenumber analysis of azimuthally distributed data: Assessing maximum allowable gap size. Mon. Wea. Rev., 140, 19451956, https://doi.org/10.1175/MWR-D-11-00219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J., M. M. Bell, R. Rogers, and J. D. Doyle, 2019: Axisymmetric potential vorticity evolution of Hurricane Patricia (2015). J. Atmos. Sci., 76, 20432063, https://doi.org/10.1175/JAS-D-18-0373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., 2016: Introduction to hurricane dynamics: Tropical cyclone intensification. Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction, U. C. Mohanty and S. G. Gopalakrishnan, Eds., Springer, 537559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2019: Hurricane Michael hits Georgia. NOAA, accessed 20 June 2020, https://www.weather.gov/ffc/2018_hurricane_michael.

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369380, https://doi.org/10.2151/jmsj1965.60.1_369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359361.

    • Search Google Scholar
    • Export Citation
  • Peng, K., and J. Fang, 2021: Effect of the initial vortex vertical structure on early development of an axisymmetric tropical cyclone. J. Geophys. Res. Atmos., 126, e2020JD033697, https://doi.org/10.1029/2020JD033697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, https://doi.org/10.1175/2008MWR2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, https://doi.org/10.1175/2009JAS3122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1983: Transformed Eliassen balanced vortex model. J. Atmos. Sci., 40, 15711583, https://doi.org/10.1175/1520-0469(1983)040<1571:TEBVM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., S. R. Fulton, and P. E. Ciesielski, 2017: Elliptic transverse circulation equations for balanced models in a generalized vertical coordinate. 11 pp., https://arxiv.org/abs/1705.05460.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, https://doi.org/10.1175/2009JAS2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, https://doi.org/10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2016: The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73, 33053328, https://doi.org/10.1175/JAS-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trabing, B. C., and M. M. Bell, 2020: Understanding error distributions of hurricane intensity forecasts during rapid intensity changes. Wea. Forecasting, 35, 22192234, https://doi.org/10.1175/WAF-D-19-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 137, 563582, https://doi.org/10.1002/qj.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. A., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., J. A. Zhang, R. F. Rogers, B. Jaimes, and L. K. Shay, 2020: The rapid intensification of Hurricane Michael (2018): Storm structure and the relationship to environmental and air–sea interactions. Mon. Wea. Rev., 149, 245267, https://doi.org/10.1175/MWR-D-20-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067, https://doi.org/10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 493 488 27
Full Text Views 239 239 4
PDF Downloads 281 281 7

Vertical Vortex Development in Hurricane Michael (2018) during Rapid Intensification

Alexander J. DesRosiersaColorado State University, Fort Collins, Colorado

Search for other papers by Alexander J. DesRosiers in
Current site
Google Scholar
PubMed
Close
,
Michael M. BellaColorado State University, Fort Collins, Colorado

Search for other papers by Michael M. Bell in
Current site
Google Scholar
PubMed
Close
, and
Ting-Yu ChaaColorado State University, Fort Collins, Colorado

Search for other papers by Ting-Yu Cha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The landfall of Hurricane Michael (2018) at category-5 intensity occurred after rapid intensification (RI) spanning much of the storm’s lifetime. Four Hurricane Hunter aircraft missions observed the RI period with tail Doppler radar (TDR). Data from each of the 14 aircraft passes through the storm were quality controlled via a combination of interactive and machine-learning techniques. TDR data from each pass were synthesized using the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) variational wind retrieval technique to yield three-dimensional kinematic fields of the storm to examine inner-core processes during RI. Vorticity and angular momentum increased and concentrated in the eyewall region. A vorticity budget analysis indicates that the tendencies became more axisymmetric over time. In this study, we focus in particular on how the eyewall vorticity tower builds vertically into the upper levels. Horizontal vorticity associated with the vertical gradient of tangential wind was tilted into the vertical by the eyewall updraft to yield a positive vertical vorticity tendency inward atop the existing vorticity tower, which is further developed locally upward and outward along the sloped eyewall through advection and stretching. Observed maintenance of thermal wind balance from a thermodynamic retrieval shows evidence of a strengthening warm core, which aided in lowering surface pressure and further contributed to the efficient intensification in the latter stages of this RI event.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Cha’s current affiliation: Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado.

Corresponding author: Alexander J. DesRosiers, adesros@rams.colostate.edu

Abstract

The landfall of Hurricane Michael (2018) at category-5 intensity occurred after rapid intensification (RI) spanning much of the storm’s lifetime. Four Hurricane Hunter aircraft missions observed the RI period with tail Doppler radar (TDR). Data from each of the 14 aircraft passes through the storm were quality controlled via a combination of interactive and machine-learning techniques. TDR data from each pass were synthesized using the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) variational wind retrieval technique to yield three-dimensional kinematic fields of the storm to examine inner-core processes during RI. Vorticity and angular momentum increased and concentrated in the eyewall region. A vorticity budget analysis indicates that the tendencies became more axisymmetric over time. In this study, we focus in particular on how the eyewall vorticity tower builds vertically into the upper levels. Horizontal vorticity associated with the vertical gradient of tangential wind was tilted into the vertical by the eyewall updraft to yield a positive vertical vorticity tendency inward atop the existing vorticity tower, which is further developed locally upward and outward along the sloped eyewall through advection and stretching. Observed maintenance of thermal wind balance from a thermodynamic retrieval shows evidence of a strengthening warm core, which aided in lowering surface pressure and further contributed to the efficient intensification in the latter stages of this RI event.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Cha’s current affiliation: Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado.

Corresponding author: Alexander J. DesRosiers, adesros@rams.colostate.edu
Save