• Abadi, M., and Coauthors, 2016: Tensorflow: A system for large-scale machine learning. Proc. 12th USENIX Symp. on Operating Systems Design and Implementation (OSDI’16), Savannah, GA, USENIX, 21 pp., https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

  • Alessandrini, S., 2019: Improving the analog ensemble wind speed forecasts for rare events. Mon. Wea. Rev., 147, 26772692, https://doi.org/10.1175/MWR-D-19-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., L. Delle Monache, S. Sperati, and G. Cervone, 2015: An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy, 157, 95110, https://doi.org/10.1016/j.apenergy.2015.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, S., and S. Lerch, 2015: Log-normal distribution based ensemble model output statistics models for probabilistic wind-speed forecasting. Quart. J. Roy. Meteor. Soc., 141, 22892299, https://doi.org/10.1002/qj.2521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, S., and Á. Baran, 2021: Calibration of wind speed ensemble forecasts for power generation. Preprint, 15 pp., https://arxiv.org/abs/2104.14910.

    • Search Google Scholar
    • Export Citation
  • Bellier, J., I. Zin, and G. Bontron, 2017: Sample stratification in verification of ensemble forecasts of continuous scalar variables: Potential benefits and pitfalls. Mon. Wea. Rev., 145, 35293544, https://doi.org/10.1175/MWR-D-16-0487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Bremnes, J. B., 2020: Ensemble postprocessing using quantile function regression based on neural networks and Bernstein polynomials. Mon. Wea. Rev., 148, 403414, https://doi.org/10.1175/MWR-D-19-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenowitz, N. D., T. Beucler, M. Pritchard, and C. S. Bretherton, 2020: Interpreting and stabilizing machine-learning parametrizations of convection. J. Atmos. Sci., 77, 43574375, https://doi.org/10.1175/JAS-D-20-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and L. A. Smith, 2007: Increasing the reliability of reliability diagrams. Wea. Forecasting, 22, 651661, https://doi.org/10.1175/WAF993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camporeale, E., and A. Carè, 2021: ACCRUE: Accurate and reliable uncertainty estimate in deterministic models. Int. J. Uncertain. Quantif., 11, 8194, https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021034623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 17081728, https://doi.org/10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, W. E., A. Subramanian, L. Delle Monache, S.-P. Xie, and F. M. Ralph, 2019: Improving atmospheric river forecasts with machine learning. Geophys. Res. Lett., 46, 10 62710 635, https://doi.org/10.1029/2019GL083662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chollet, F., and Coauthors, 2018: Keras: The Python deep learning library. Astrophysics Source Code Library, ASCL-1806, accessed 10 April 2019, https://ascl.net/1806.022.

  • Cobb, A., A. Michaelis, S. Iacobellis, F. M. Ralph, and L. Delle Monache, 2021: Atmospheric river sectors: Definition and characteristics observed using dropsondes from 2014–20 CalWater and AR Recon. Mon. Wea. Rev., 149, 623644, https://doi.org/10.1175/MWR-D-20-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and F. M. Ralph, 2021: A summary of GFS ensemble integrated water vapor transport forecasts and skill along the U.S. West Coast during water years 2017–20. Wea. Forecasting, 36, 361377, https://doi.org/10.1175/WAF-D-20-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, A. Martin, N. Gaggini, J. R. Spackman, P. J. Neiman, J. J. Rutz, and R. Pierce, 2017: Forecasting atmospheric rivers during CalWater 2015. Bull. Amer. Meteor. Soc., 98, 449459, https://doi.org/10.1175/BAMS-D-15-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deflorio, M. J., D. E. Waliser, B. Guan, D. A. Lavers, F. Martin Ralph, and F. Vitart, 2018: Global assessment of atmospheric river prediction skill. J. Hydrometeor., 19, 409426, https://doi.org/10.1175/JHM-D-17-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHaan, L. L., A. C. Martin, R. R. Weihs, L. Delle Monache, and F. M. Ralph, 2021: Object-based verification of atmospheric river predictions in the northeast Pacific. Wea. Forecasting, 36, 15751587, https://doi.org/10.1175/WAF-D-20-0236.1.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, X. Deng, Y. Zhou, and R. Stull, 2006: Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. J. Geophys. Res., 111, D05308, https://doi.org/10.1029/2005JD006311.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, https://doi.org/10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diebold, F. X., and R. S. Mariano, 2002: Comparing predictive accuracy. J. Bus. Econ. Stat., 20, 134144.

  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739759, https://doi.org/10.3402/tellusa.v21i6.10143.

  • Fish, M. A., A. M. Wilson, and F. M. Ralph, 2019: Atmospheric river families: Definition and associated synoptic conditions. J. Hydrometeor., 20, 20912108, https://doi.org/10.1175/JHM-D-18-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghazvinian, M., Y. Zhang, D.-J. Seo, M. He, and N. Fernando, 2021: A novel hybrid artificial neural network-parametric scheme for postprocessing medium-range precipitation forecasts. Adv. Water Resour., 151, 103907, https://doi.org/10.1016/j.advwatres.2021.103907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359378, https://doi.org/10.1198/016214506000001437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and R. Ranjan, 2011: Comparing density forecasts using threshold- and quantile-weighted scoring rules. J. Bus. Econ. Stat., 29, 411422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, https://doi.org/10.1175/MWR2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gowan, T. M., W. J. Steenburgh, and C. S. Schwartz, 2018: Validation of mountain precipitation forecasts from the convection-permitting NCAR ensemble and operational forecast systems over the western United States. Wea. Forecasting, 33, 739765, https://doi.org/10.1175/WAF-D-17-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, C., and F. Berkhahn, 2016: Entity embeddings of categorical variables. Preprint, 9 pp., https://arxiv.org/abs/1604.06737.

  • Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus, 63A, 625641, https://doi.org/10.1111/j.1600-0870.2010.00497.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-H. Kim, E.-S. Kim, and K.-W. On, 2021: Unified deep learning model for El Niño/Southern Oscillation forecasts by incorporating seasonality in climate data. Sci. Bull., 66, 13581366, https://doi.org/10.1016/j.scib.2021.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327, https://doi.org/10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., W. Chapman, S. V. Adams, C. Kirkwood, J. S. Hosking, N. H. Robinson, S. Lerch, and A. C. Subramanian, 2021: Towards implementing artificial intelligence post-processing in weather and climate: Proposed actions from the Oxford 2019 workshop. Philos. Trans. Roy. Soc. London, A379, 20200091, https://doi.org/10.1098/rsta.2020.0091.

    • Search Google Scholar
    • Export Citation
  • Hecht, C. W., and J. M. Cordeira, 2017: Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over North Coastal California. Geophys. Res. Lett., 44, 90489058, https://doi.org/10.1002/2017GL074179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemri, S., M. Scheuerer, F. Pappenberger, K. Bogner, and T. Haiden, 2014: Trends in the predictive performance of raw ensemble weather forecasts. Geophys. Res. Lett., 41, 91979205, https://doi.org/10.1002/2014GL062472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, A., F. Krüger, and S. Lerch, 2019: Evaluating probabilistic forecasts with scoring rules. J. Stat. Software, 90, 137, https://doi.org/10.18637/jss.v090.i12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junk, C., L. Delle Monache, S. Alessandrini, G. Cervone, and L. Von Bremen, 2015: Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble. Meteor. Z., 24, 361379, https://doi.org/10.1127/metz/2015/0659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingma, P., B. Diederik, and J. Lei, 2014: Adam: A method for stochastic optimization. Preprint, 15 pp., https://arxiv.org/abs/1412.6980.

  • Kirkwood, C., T. Economou, H. Odbert, and N. Pugeault, 2021: A framework for probabilistic weather forecast post-processing across models and lead times using machine learning. Philos. Trans. Roy. Soc., A379, 20200099, https://doi.org/10.1098/rsta.2020.0099.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogh, A., and J. A. Hertz, 1992: A simple weight decay can improve generalization. Advances in Neural Information Processing Systems 4 (NIPS’91), J. Moody, S. Hanson, and R. P. Lippmann, Eds., MIT Press, 950–957.

  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerch, S., and T. L. Thorarinsdottir, 2013: Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus, 65A, 21206, https://doi.org/10.3402/tellusa.v65i0.21206.

    • Search Google Scholar
    • Export Citation
  • Lerch, S., T. L. Thorarinsdottir, F. Ravazzolo, and T. Gneiting, 2017: Forecaster’s dilemma. Extreme Events Forecast Eval., 32, 106127.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, https://doi.org/10.1016/j.jcp.2007.02.014.

  • Li, Y., J. Lang, L. Ji, J. Zhong, Z. Wang, Y. Guo, and S. He, 2020: Weather forecasting using ensemble of spatial-temporal attention network and multi-layer perceptron. Asia-Pac. J. Atmos. Sci., 57, 533546, https://doi.org/10.1007/s13143-020-00212-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, J., E. Shelhamer, and T. Darrell, 2015: Fully convolutional networks for semantic segmentation. 2015 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Boston, MA, IEEE, https://doi.org/10.1109/CVPR.2015.7298965.

    • Crossref
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., F. M. Ralph, R. Demirdjian, L. DeHaan, R. Weihs, J. Helly, D. Reynolds, and S. Iacobellis, 2018: Evaluation of atmospheric river predictions by the WRF Model using aircraft and regional mesonet observations of orographic precipitation and its forcing. J. Hydrometeor., 19, 10971113, https://doi.org/10.1175/JHM-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 10871096, https://doi.org/10.1287/mnsc.22.10.1087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W., L. Coy, R. Gelaro, A. Huang, D. Merkova, E. B. Smith, M. Sienkiewicz, and K. Wargan, 2016: MERRA-2 input observations: Summary and assessment. NASA Tech. Memo. NASA/TM-2016-104606/Vol. 46, 51 pp.

  • McGovern, A., K. L. Elmore, D. J. Gagne, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017: Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 20732090, https://doi.org/10.1175/BAMS-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019: Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Amer. Meteor. Soc., 100, 21752199, https://doi.org/10.1175/BAMS-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meech, S., S. Alessandrini, W. Chapman, and L. Delle Monache, 2021: Post-processing rainfall in a high-resolution simulation of the 1994 Piedmont flood. Bull. Atmos. Sci. Technol., 1, 373385, https://doi.org/10.1007/s42865-020-00028-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor. Climatol., 12, 595600, https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair, V., and G. E. Hinton, 2010: Rectified linear units improve restricted Boltzmann machines. Proc. 27th Int. Conf. on Machine Learning, Haifa, Israel, ICML, 807–814.

  • Nardi, K. M., E. A. Barnes, and F. M. Ralph, 2018: Assessment of numerical weather prediction model reforecasts of the occurrence, intensity, and location of atmospheric rivers along the West Coast of North America. Mon. Wea. Rev., 146, 33433362, https://doi.org/10.1175/MWR-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayak, M. A., G. Villarini, and D. A. Lavers, 2014: On the skill of numerical weather prediction models to forecast atmospheric rivers over the central United States. Geophys. Res. Lett., 41, 43544362, https://doi.org/10.1002/2014GL060299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, M., 2015: Neural Networks and Deep Learning. Determination Press, http://neuralnetworksanddeeplearning.com/.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2018: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2020a: West Coast forecast challenges and development of atmospheric river reconnaissance. Bull. Amer. Meteor. Soc., 101, E1357E1377, https://doi.org/10.1175/BAMS-D-19-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., M. D. Dettinger, L. J. Schick, and M. L. Anderson, 2020b: Introduction to atmospheric rivers. Atmospheric Rivers, F. M. Ralph et al., Eds., Springer, 1–13.

    • Crossref
    • Export Citation
  • Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 38853900, https://doi.org/10.1175/MWR-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, D. E., D. L. Shrestha, and Q. J. Wang, 2013: Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci., 17, 35873603, https://doi.org/10.5194/hess-17-3587-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronneberger, O., P. Fischer, and T. Brox, 2015: U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), N. Navab et al., Eds., Springer, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28.

    • Crossref
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, https://doi.org/10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., M. B. Switanek, R. P. Worsnop, and T. M. Hamill, 2020: Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California. Mon. Wea. Rev., 148, 34893506, https://doi.org/10.1175/MWR-D-20-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, B., and S. Lerch, 2021: Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison. Preprint, 44 pp., https://arxiv.org/abs/2106.09512.

    • Search Google Scholar
    • Export Citation
  • Schulzweida, U., L. Kornblueh, and R. Quast, 2006: CDO user guide: Version 1.9.5, Vol. 1. Climate Data Operators Doc., 215 pp.

  • Siegert, S., J. Bröcker, and H. Kantz, 2012: Rank histograms of stratified Monte Carlo ensembles. Mon. Wea. Rev., 140, 15581571, https://doi.org/10.1175/MWR-D-11-00302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 19291958.

    • Search Google Scholar
    • Export Citation
  • Stone, R. E., C. A. Reynolds, J. D. Doyle, R. H. Langland, N. L. Baker, D. A. Lavers, and F. M. Ralph, 2020: Atmospheric river reconnaissance observation impact in the Navy Global Forecast System. Mon. Wea. Rev., 148, 763782, https://doi.org/10.1175/MWR-D-19-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theocharides, S., G. Makrides, A. Livera, M. Theristis, P. Kaimakis, and G. E. Georghiou, 2020: Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. Appl. Energy, 268, 115023, https://doi.org/10.1016/j.apenergy.2020.115023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., and T. Gneiting, 2010: Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression. J. Roy. Stat. Soc., 173A, 371388, https://doi.org/10.1111/j.1467-985X.2009.00616.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., and M. S. Johnson, 2012: Probabilistic wind gust forecasting using nonhomogeneous Gaussian regression. Mon. Wea. Rev., 140, 889897, https://doi.org/10.1175/MWR-D-11-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrey, L., and J. Shavlik, 2010: Transfer learning. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. E. Soria Olivas et al., Eds., IGI Global, 242–264.

    • Crossref
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., 1989: A new look at weather forecasting through analogues. Mon. Wea. Rev., 117, 22302247, https://doi.org/10.1175/1520-0493(1989)117<2230:ANLAWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and Coauthors, 2021: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Amer. Meteor. Soc., 102, E681E699, https://doi.org/10.1175/BAMS-D-19-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, https://doi.org/10.1175/WAF-D-13-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, https://doi.org/10.1002/met.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2010: Sampling distributions of the Brier score and Brier skill score under serial dependence. Quart. J. Roy. Meteor. Soc., 136, 21092118, https://doi.org/10.1002/qj.709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, A. M., and Coauthors, 2020: Training the next generation of researchers in the science and application of atmospheric rivers. Bull. Amer. Meteor. Soc., 101, E738E743, https://doi.org/10.1175/BAMS-D-19-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, V., M. Riemer, E. K. M. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude waveguide—A review. Mon. Wea. Rev., 146, 19652001, https://doi.org/10.1175/MWR-D-16-0483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., D.-J. Seo, J. Demargne, J. D. Brown, S. Cong, and J. Schaake, 2011: Generation of ensemble precipitation forecast from single-valued quantitative precipitation forecast for hydrologic ensemble prediction. J. Hydrol., 399, 281298, https://doi.org/10.1016/j.jhydrol.2011.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, A., Z. C. Lipton, M. Li, and A. J. Smola, 2021: Dive into Deep Learning. Release 0.17.0, self published, 823 pp., https://arxiv.org/abs/2106.11342.

All Time Past Year Past 30 Days
Abstract Views 95 95 94
Full Text Views 35 35 35
PDF Downloads 46 46 46

Probabilistic Predictions from Deterministic Atmospheric River Forecasts with Deep Learning

View More View Less
  • 1 aScripps Institution of Oceanography, La Jolla, California
  • | 2 bNational Center for Atmospheric Research, Boulder, Colorado
  • | 3 cUniversity of Colorado Boulder, Boulder, Colorado
  • | 4 dKarlsruhe Institute of Technology, Karlsruhe, Germany
Restricted access

Abstract

Deep-learning (DL) postprocessing methods are examined to obtain reliable and accurate probabilistic forecasts from single-member numerical weather predictions of integrated vapor transport (IVT). Using a 34-yr reforecast, based on the Center for Western Weather and Water Extremes West-WRF mesoscale model of North American West Coast IVT, the dynamically/statistically derived 0–120-h probabilistic forecasts for IVT under atmospheric river (AR) conditions are tested. These predictions are compared with the Global Ensemble Forecast System (GEFS) dynamic model and the GEFS calibrated with a neural network. In addition, the DL methods are tested against an established, but more rigid, statistical–dynamical ensemble method (the analog ensemble). The findings show, using continuous ranked probability skill score and Brier skill score as verification metrics, that the DL methods compete with or outperform the calibrated GEFS system at lead times from 0 to 48 h and again from 72 to 120 h for AR vapor transport events. In addition, the DL methods generate reliable and skillful probabilistic forecasts. The implications of varying the length of the training dataset are examined, and the results show that the DL methods learn relatively quickly and ∼10 years of hindcast data are required to compete with the GEFS ensemble.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William E. Chapman, wchapman@ucsd.edu

Abstract

Deep-learning (DL) postprocessing methods are examined to obtain reliable and accurate probabilistic forecasts from single-member numerical weather predictions of integrated vapor transport (IVT). Using a 34-yr reforecast, based on the Center for Western Weather and Water Extremes West-WRF mesoscale model of North American West Coast IVT, the dynamically/statistically derived 0–120-h probabilistic forecasts for IVT under atmospheric river (AR) conditions are tested. These predictions are compared with the Global Ensemble Forecast System (GEFS) dynamic model and the GEFS calibrated with a neural network. In addition, the DL methods are tested against an established, but more rigid, statistical–dynamical ensemble method (the analog ensemble). The findings show, using continuous ranked probability skill score and Brier skill score as verification metrics, that the DL methods compete with or outperform the calibrated GEFS system at lead times from 0 to 48 h and again from 72 to 120 h for AR vapor transport events. In addition, the DL methods generate reliable and skillful probabilistic forecasts. The implications of varying the length of the training dataset are examined, and the results show that the DL methods learn relatively quickly and ∼10 years of hindcast data are required to compete with the GEFS ensemble.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William E. Chapman, wchapman@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 5.68 MB)
Save