• Anderson, J. L., 1997: The impact of dynamical constraints on the selection of initial conditions for ensemble predictions: Low-order perfect model results. Mon. Wea. Rev., 125, 29692983, https://doi.org/10.1175/1520-0493(1997)125<2969:TIODCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bai, Y. L., X. Li, and C. L. Huang, 2013: Handling error propagation in sequential data assimilation using an evolutionary strategy. Adv. Atmos. Sci., 30, 10961105, https://doi.org/10.1007/s00376-012-2115-7.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., T. Iversen, and T. N. Palmer, 2003: Forcing singular vectors and other sensitive model structures. Quart. J. Roy. Meteor. Soc., 129, 24012423, https://doi.org/10.1256/qj.02.126.

    • Search Google Scholar
    • Export Citation
  • Basnarkov, L., and L. Kocarev, 2012: Forecast improvement in Lorenz 96 system. Nonlinear Processes Geophys., 19, 569575, https://doi.org/10.5194/npg-19-569-2012.

    • Search Google Scholar
    • Export Citation
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, https://doi.org/10.1175/2008JAS2677.1.

    • Search Google Scholar
    • Export Citation
  • Birgin, E. G., J. M. Martinez, and M. Raydan, 2000: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim., 10, 11961211, https://doi.org/10.1137/S1052623497330963.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., 2006: Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model. Tellus, 58A, 538548, https://doi.org/10.1111/j.1600-0870.2006.00197.x.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 2019: Introduction to the special issue on “25 years of ensemble forecasting” . Quart. J. Roy. Meteor. Soc., 145 (Suppl. 1), 1–11, https://doi.org/10.1002/qj.3370.

    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Z. Wei, and Y. J. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, https://doi.org/10.1175/MWR2905.1.

    • Search Google Scholar
    • Export Citation
  • Candille, G., and O. Talagrand, 2005: Evaluation of probabilistic prediction systems for a scalar variable. Quart. J. Roy. Meteor. Soc., 131, 21312150, https://doi.org/10.1256/qj.04.71.

    • Search Google Scholar
    • Export Citation
  • Demaeyer, J., S. G. Penny, and S. Vannitsem, 2022: Identifying efficient ensemble perturbations for initializing subseasonal-to-seasonal prediction. J. Adv. Model. Earth Syst., 14, e2021MS002828, https://doi.org/10.1029/2021MS002828.

    • Search Google Scholar
    • Export Citation
  • Descamps, L., and O. Talagrand, 2007: On some aspects of the definition of initial conditions for ensemble prediction. Mon. Wea. Rev., 135, 32603272, https://doi.org/10.1175/MWR3452.1.

    • Search Google Scholar
    • Export Citation
  • Du, J. , and Coauthors, 2018: Ensemble methods for meteorological predictions. Handbook of Hydrometeorological Ensemble Forecasting, Q. Duan et al., Eds., Springer, 1–52.

  • Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus, 65 A, 18452, https://doi.org/10.3402/tellusa.v65i0.18452.

    • Search Google Scholar
    • Export Citation
  • Duan, W. S., and P. Zhao, 2014: Revealing the most disturbing tendency error of Zebiak–Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 23512367, https://doi.org/10.1007/s00382-014-2369-0.

    • Search Google Scholar
    • Export Citation
  • Duan, W. S., and Z. H. Huo, 2016: An approach to generating mutually independent initial perturbations for ensemble forecasts: Orthogonal conditional nonlinear optimal perturbations. J. Atmos. Sci., 73, 9971014, https://doi.org/10.1175/JAS-D-15-0138.1.

    • Search Google Scholar
    • Export Citation
  • Duan, W. S., B. Tian, and H. Xu, 2013: Simulations of two types of El Niño events by an optimal forcing vector approach. Climate Dyn., 43, 16771692, https://doi.org/10.1007/s00382-013-1993-4.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739759, https://doi.org/10.3402/tellusa.v21i6.10143.

  • Feng, F., and W. S. Duan, 2013: The role of constant optimal forcing in correcting forecast models. Sci. China Earth Sci., 56, 434443, https://doi.org/10.1007/s11430-012-4568-z.

    • Search Google Scholar
    • Export Citation
  • Feng, J., R. Q. Ding, D. Q. Liu, and J. P. Li, 2014: The application of nonlinear local Lyapunov vectors to ensemble predictions in Lorenz systems. J. Atmos. Sci., 71, 35543567, https://doi.org/10.1175/JAS-D-13-0270.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., R. Q. Ding, J. P. Li, and D. Q. Liu, 2016: Comparison of nonlinear local Lyapunov vectors with bred vectors, random perturbations and ensemble transform Kalman filter strategies in a barotropic model. Adv. Atmos. Sci., 33, 10361046, https://doi.org/10.1007/s00376-016-6003-4.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. Li, R. Ding, and Z. Toth, 2018: Comparison of nonlinear local Lyapunov vectors and bred vectors in estimating the spatial distribution of error growth. J. Atmos. Sci., 75, 10731087, https://doi.org/10.1175/JAS-D-17-0266.1.

    • Search Google Scholar
    • Export Citation
  • Fortin, V., M. Abaza, F. Anctil, and R. Turcolle, 2014: Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeor., 15, 17081713, https://doi.org/10.1175/JHM-D-14-0008.1.

    • Search Google Scholar
    • Export Citation
  • Grudzien, C., M. Bocquet, and A. Carrassi, 2020: On the numerical integration of the Lorenz-96 model, with scalar additive noise, for benchmark twin experiments. Geosci. Model Dev., 13, 19031924, https://doi.org/10.5194/gmd-13-1903-2020.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., C. Snyder, and R. E. Morss, 2000: A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles. Mon. Wea. Rev., 128, 18351851, https://doi.org/10.1175/1520-0493(2000)128<1835:ACOPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., 2014: Assessing the ensemble spread–error relationship. Mon. Wea. Rev., 142, 11251142, https://doi.org/10.1175/MWR-D-12-00111.1.

    • Search Google Scholar
    • Export Citation
  • Hou, D., Z. Toth, and Y. Zhu, 2006: A stochastic parameterization scheme within NCEP global ensemble forecast system. 18th Conf. on Probability and Statistics in the Atmospheric Sciences, Atlanta, GA, Amer. Meteor. Soc., 4.5, https://ams.confex.com/ams/Annual2006/techprogram/paper_101401.htm.

  • Hou, D., Z. Toth, and Y. Zhu, 2008: The impact of a stochastic perturbation scheme on hurricane prognosis in NCEP global ensemble forecast system. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, New Orleans, LA, Amer. Meteor. Soc., 4A.6, https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154340.htm.

  • Hou, D., Z. Toth, Y. Zhu, W. Yang, and R. Wobus, 2010: A stochastic total tendency perturbation scheme representing model-related uncertainties in the NCEP global ensemble forecast system. NOAA/NCEP/EMC, Camp Springs, MD, 50 pp., http://www.emc.ncep.noaa.gov/gmb/yzhu/gif/pub/Manuscript_STTP_Tellus_A_HOU-1.pdf.

  • Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A, 273277, https://doi.org/10.3402/tellusa.v56i4.14424.

    • Search Google Scholar
    • Export Citation
  • Huo, Z. H., and W. S. Duan, 2019: The application of the orthogonal conditional nonlinear optimal perturbations method to typhoon track ensemble forecasts. Sci. China Earth Sci., 62, 376388, https://doi.org/10.1007/s11430-018-9248-9.

    • Search Google Scholar
    • Export Citation
  • Huo, Z. H., W. S. Duan, and F. F. Zhou, 2019: Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations. Adv. Atmos. Sci., 36, 231247, https://doi.org/10.1007/s00376-018-8001-1.

    • Search Google Scholar
    • Export Citation
  • Khare, S. P., and J. L. Anderson, 2006: An examination of ensemble filter based adaptive observation methodologies. Tellus, 58A, 179195, https://doi.org/10.1111/j.1600-0870.2006.00163.x.

    • Search Google Scholar
    • Export Citation
  • Kingma, D. P., and J. Ba, 2014: Adam: A method for stochastic optimization. Third Int. Conf. for Learning Representations, San Diego, CA, ICLR, 1–15, https://arxiv.org/abs/1412.6980.

  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2017: ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 8490, https://doi.org/10.1145/3065386.

    • Search Google Scholar
    • Export Citation
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436444, https://doi.org/10.1038/nature14539.

  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, https://doi.org/10.1016/j.jcp.2007.02.014.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1996: Predicability: A problem partly Lorenz96. Proc. Workshop on Predictability, ECMWF, Reading, United Kingdom, 1–18, https://www.ecmwf.int/node/10829.

  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414, https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maas, A. L., A. Y. Hannun, and A. Y. Ng, 2013: Rectifier nonlinearities improve neural network acoustic models. Proc. ICML, Atlanta, GA, PMLR, 1–3, http://ai.stanford.edu/∼amaas/papers/relu_hybrid_icml2013_final.pdf.

  • Mason, I. B., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and Z. N. Jiang, 2008: A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation. Chin. Sci. Bull., 53, 20622068, https://doi.org/10.1007/s11434-008-0272-y.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes Geophys., 10, 493501, https://doi.org/10.5194/npg-10-493-2003.

    • Search Google Scholar
    • Export Citation
  • Mureau, R., F. Molteni, and T. N. Palmer, 1993: Ensemble prediction using dynamically conditioned perturbations. Quart. J. Roy. Meteor. Soc., 119, 299323, https://doi.org/10.1002/qj.49711951005.

    • Search Google Scholar
    • Export Citation
  • Nicolis, C., 2003: Dynamics of model error: Some generic features. J. Atmos. Sci., 60, 22082218, https://doi.org/10.1175/1520-0469(2003)060<2208:DOMESG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicolis, C., R. A. P. Perdigao, and S. Vannitsem, 2009: Dynamics of prediction errors under the combined effect of initial condition and model errors. J. Atmos. Sci., 66, 766778, https://doi.org/10.1175/2008JAS2781.1.

    • Search Google Scholar
    • Export Citation
  • Orrell, D., 2002: Role of the metric in forecast error growth: How chaotic is the weather? Tellus, 54, 350362, https://doi.org/10.3402/tellusa.v54i4.12159.

    • Search Google Scholar
    • Export Citation
  • Orrell, D., 2005: Ensemble forecasting in a system with model error. J. Atmos. Sci., 62, 16521659, https://doi.org/10.1175/JAS3406.1.

    • Search Google Scholar
    • Export Citation
  • Orrell, D., L. Smith, J. Barkmeijer, and T. N. Palmer, 2001: Model error in weather forecasting. Nonlinear Processes Geophys., 8, 357371, https://doi.org/10.5194/npg-8-357-2001.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2000: Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys., 63, 71116, https://doi.org/10.1088/0034-4885/63/2/201.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Research Department Tech. Memo. 598, ECMWF, Reading, United Kingdom, 42 pp., https://doi.org/10.21957/ps8gbwbdv.

  • Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 38853900, https://doi.org/10.1175/MWR-D-18-0187.1.

    • Search Google Scholar
    • Export Citation
  • Revelli, J. A., M. A. Rodriguez, and H. S. Wio, 2010: The use of rank histograms and MVL diagrams to characterize ensemble evolution in weather forecasting. Adv. Atmos. Sci., 27, 14251437, https://doi.org/10.1007/s00376-009-9153-6.

    • Search Google Scholar
    • Export Citation
  • Salman, A. G., B. Kanigoro, and Y. Heryadi, 2015: Weather forecasting using deep learning techniques. 2015 Int. Conf. on Advanced Computer Science and Information Systems (ICACSIS), Depok, Indonesia, IEEE, https://doi.org/10.1109/ICACSIS.2015.7415154.

  • Scher, S., 2018: Toward data‐driven weather and climate forecasting: Approximating a simple general circulation model with deep learning. Geophys. Res. Lett., 45, 12 616–12 622, https://doi.org/10.1029/2018GL080704.

  • Scher, S., and G. Messori, 2018: Predicting weather forecast uncertainty with machine learning. Quart. J. Roy. Meteor. Soc., 144, 28302841, https://doi.org/10.1002/qj.3410.

    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., M. B. Switanek, R. P. Worsnop, and T. M. Hamill, 2020: Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California. Mon. Wea. Rev., 148, 34893506, https://doi.org/10.1175/MWR-D-20-0096.1.

    • Search Google Scholar
    • Export Citation
  • Shi, X. J., Z. R. Chen, H. Wang, D. Y. Yeung, W. K. Wong, and W. C. Woo, 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Proc. 28th Int. Conf. on Neural Information Processing Systems, Cambridge, MA, MIT Press, https://dl.acm.org/doi/10.5555/2969239.2969329.

  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, https://doi.org/10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., R. Vautard, and B. Strauss, 1997: Evaluation of probabilistic prediction systems. ECMWF Workshop on Predictability, Reading, United Kingdom, ECMWF, 125.

  • Tao, L. J., and W. S. Duan, 2019: Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting. Wea. Forecasting, 34, 13211342, https://doi.org/10.1175/WAF-D-19-0050.1.

    • Search Google Scholar
    • Export Citation
  • Tao, L. J., W. S. Duan, and S. Vannitsem, 2020: Improving forecasts of El Nino diversity: A nonlinear forcing singular vector approach. Climate Dyn., 55, 739754, https://doi.org/10.1007/s00382-020-05292-5.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Kekem, D. L., 2018: Dynamics of the Lorenz-96 Model: Bifurcations, Symmetries and Waves. University of Groningen, 193 pp.

  • Vannitsem, S., 2006: The role of scales in the dynamics of parameterization uncertainties. J. Atmos. Sci., 63, 16591671, https://doi.org/10.1175/JAS3708.1.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., 2014: Stochastic modelling and predictability: Analysis of a low-order coupled ocean-atmosphere model. Philos. Trans. Roy. Soc., A372, 20130282, https://doi.org/10.1098/rsta.2013.0282.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and Z. Toth, 2002: Short-term dynamics of model errors. J. Atmos. Sci., 59, 25942604, https://doi.org/10.1175/1520-0469(2002)059<2594:STDOME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and W. Duan, 2020: On the use of near-neutral backward Lyapunov vectors to get reliable ensemble forecasts in coupled ocean–atmosphere systems. Climate Dyn., 55, 11251139, https://doi.org/10.1007/s00382-020-05313-3.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and Coauthors, 2021: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Amer. Meteor. Soc., 102, E681E699, https://doi.org/10.1175/BAMS-D-19-0308.1.

    • Search Google Scholar
    • Export Citation
  • Veldkamp, S., K. Whan, S. Dirksen, and M. Schmeits, 2021: Statistical postprocessing of wind speed forecasts using convolutional neural networks. Mon. Wea. Rev., 149, 11411152, https://doi.org/10.1175/MWR-D-20-0219.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., 2021: Study on the Moist Singular Vectors and Nonlinear Initial Perturbation in GRAPES-GEPS. University of Chinese Academy of Sciences, 129 pp.

  • Wang, Q., M. Mu, and G. Sun, 2020: A useful approach to sensitivity and predictability studies in geophysical fluid dynamics: Conditional non-linear optimal perturbation. Natl. Sci. Rev., 7, 214223, https://doi.org/10.1093/nsr/nwz039.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and W. Duan, 2019: Influences of initial perturbation amplitudes and ensemble sizes on the ensemble forecasts made by CNOPs method. Chin. J. Atmos. Sci., 43, 919–933, http://duanws.lasg.ac.cn/ueditor/php/upload/file/20191009/1570608319337097.pdf.

    • Search Google Scholar
    • Export Citation
  • Wei, M. Z., and Z. Toth, 2003: A new measure of ensemble performance: Perturbation versus error correlation analysis (PECA). Mon. Wea. Rev., 131, 15491565, https://doi.org/10.1175//1520-0493(2003)131<1549:ANMOEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, M. Z., Z. Toth, R. Wobus, and Y. J. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, Q., L. Chen, W. Duan, X. Wang, Z. Zu, X. Li, S. Zhang, and Y. Zhang, 2021: Using conditional nonlinear optimal perturbation to generate initial perturbations in ENSO ensemble forecasts. Wea. Forecasting, 36, 2101–2111, https://doi.org/10.1175/WAF-D-21-0063.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 528 528 22
Full Text Views 234 234 8
PDF Downloads 256 256 9

An Ensemble Forecasting Method for Dealing with the Combined Effects of the Initial and Model Errors and a Potential Deep Learning Implementation

Wansuo DuanaLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Wansuo Duan in
Current site
Google Scholar
PubMed
Close
,
Junjie MaaLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Junjie Ma in
Current site
Google Scholar
PubMed
Close
, and
Stéphane VannitsemcRoyal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by Stéphane Vannitsem in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, a new nonlinear forcing singular vector (NFSV) approach is proposed to provide mutually independent optimally combined modes of initial perturbations and model perturbations (C-NFSVs) in ensemble forecasts. The C-NFSVs are a group of optimally growing structures that take into account the impact of the interaction between the initial errors and the model errors effectively, generalizing the original NFSV for simulations of the impact of the model errors. The C-NFSVs method is tested in the context of the Lorenz-96 model to demonstrate its potential to improve ensemble forecast skills. This method is compared with the orthogonal conditional nonlinear optimal perturbations (O-CNOPs) method for estimating only the initial uncertainties and the orthogonal NFSVs (O-NFSVs) for estimating only the model uncertainties. The results demonstrate that when both the initial perturbations and model perturbations are introduced in the forecasting system, the C-NFSVs are much more capable of achieving higher ensemble forecasting skills. The use of a deep learning approach as a remedy for the expensive computational costs of the C-NFSVs is evaluated. The results show that learning the impact of the C-NFSVs on the ensemble provides a useful and efficient alternative for the operational implementation of C-NFSVs in forecasting suites dealing with the combined effects of the initial errors and the model errors.

Significance Statement

A new ensemble forecasting method for dealing with combined effects of initial errors and model errors, i.e., the C-NFSVs, is proposed, which is an extension of the NFSV approach for simulating the model error effects in ensemble forecasts. The C-NFSVs provide mutually independent optimally combined modes of initial perturbations and model perturbations. This new method is tested for generating ensemble forecasts in the context of the Lorenz-96 model, and there are indications that the optimally growing structures may provide reliable ensemble forecasts. Furthermore, it is found that a hybrid dynamical–deep learning approach could be a potential avenue for real-time ensemble forecasting systems when perturbations combine the impact of the initial and the model errors.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wansuo Duan, duanws@lasg.iap.ac.cn

Abstract

In this paper, a new nonlinear forcing singular vector (NFSV) approach is proposed to provide mutually independent optimally combined modes of initial perturbations and model perturbations (C-NFSVs) in ensemble forecasts. The C-NFSVs are a group of optimally growing structures that take into account the impact of the interaction between the initial errors and the model errors effectively, generalizing the original NFSV for simulations of the impact of the model errors. The C-NFSVs method is tested in the context of the Lorenz-96 model to demonstrate its potential to improve ensemble forecast skills. This method is compared with the orthogonal conditional nonlinear optimal perturbations (O-CNOPs) method for estimating only the initial uncertainties and the orthogonal NFSVs (O-NFSVs) for estimating only the model uncertainties. The results demonstrate that when both the initial perturbations and model perturbations are introduced in the forecasting system, the C-NFSVs are much more capable of achieving higher ensemble forecasting skills. The use of a deep learning approach as a remedy for the expensive computational costs of the C-NFSVs is evaluated. The results show that learning the impact of the C-NFSVs on the ensemble provides a useful and efficient alternative for the operational implementation of C-NFSVs in forecasting suites dealing with the combined effects of the initial errors and the model errors.

Significance Statement

A new ensemble forecasting method for dealing with combined effects of initial errors and model errors, i.e., the C-NFSVs, is proposed, which is an extension of the NFSV approach for simulating the model error effects in ensemble forecasts. The C-NFSVs provide mutually independent optimally combined modes of initial perturbations and model perturbations. This new method is tested for generating ensemble forecasts in the context of the Lorenz-96 model, and there are indications that the optimally growing structures may provide reliable ensemble forecasts. Furthermore, it is found that a hybrid dynamical–deep learning approach could be a potential avenue for real-time ensemble forecasting systems when perturbations combine the impact of the initial and the model errors.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wansuo Duan, duanws@lasg.iap.ac.cn
Save