• Asai, T., 1970: Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Meteor. Soc. Japan, 48, 129139, https://doi.org/10.2151/jmsj1965.48.2_129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaji, V., J.-L. Redelsperger, and G. P. Klassen, 1993: Mechanisms for the mesoscale organization of tropical cloud clusters in GATE Phase III. Part I: Shallow cloud bands. J. Atmos. Sci., 50, 35713589, https://doi.org/10.1175/1520-0469(1993)050<3571:MFTMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banghoff, J. R., D. J. Stensrud, and M. R. Kumjian, 2018: Convective boundary layer depth estimation from S-band dual-polarization radar. J. Atmos. Oceanic Technol., 35, 17231733, https://doi.org/10.1175/JTECH-D-17-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banghoff, J. R., J. D. Sorber, D. J. Stensrud, G. S. Young, and M. R. Kumjian, 2020: A 10-year warm-season climatology of horizontal convective rolls and cellular convection in central Oklahoma. Mon. Wea. Rev., 148, 2142, https://doi.org/10.1175/MWR-D-19-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and K. C. Crawford, 2000: Estimating sensible heat flux from the Oklahoma Mesonet. J. Appl. Meteor., 39, 102116, https://doi.org/10.1175/1520-0450(2000)039<0102:ESHFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space Phys., 18, 683697, https://doi.org/10.1029/RG018i003p00683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1999: Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci., 56, 26132636, https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, T. W., and R. M. Wakimoto, 1989: The relationship between radar reflectivities and clouds associated with horizontal roll convection on 8 August 1982. Mon. Wea. Rev., 117, 15301544, https://doi.org/10.1175/1520-0493(1989)117<1530:TRBRRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional experiments. Quart. J. Roy. Meteor. Soc., 112, 899925, https://doi.org/10.1002/qj.49711247402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1976: Discussion of ‘Thermals over the sea and gull flight behavior’ by A. H. Woodcock. Bound.-Layer Meteor., 10, 241246, https://doi.org/10.1007/BF00229293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fankhauser, J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev., 123, 291314, https://doi.org/10.1175/1520-0493(1995)123<0291:IODCAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2005: A simple numerical model of the flight behavior of small insects in the atmospheric convective boundary layer. Environ. Entomol., 34, 353360, https://doi.org/10.1603/0046-225X-34.2.353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, K. R., and H. Ottersten, 1969: Radar investigations of convective patterns in the clear atmosphere. J. Atmos. Sci., 26, 666672, https://doi.org/10.1175/1520-0469(1969)26<666:RIOCPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., III, 1971: Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci., 28, 11651170, https://doi.org/10.1175/1520-0469(1971)028<1165:LECBAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1982: A single Doppler radar study of horizontal-roll convection in a lake-effect snow storm. J. Atmos. Sci., 39, 15211531, https://doi.org/10.1175/1520-0469(1982)039<1521:ASDRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41, 18161826, https://doi.org/10.1175/1520-0469(1984)041<1816:HRABLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, T. G., 1970: The dynamics of the convective process in clear air as seen by radar. J. Atmos. Sci., 27, 11381147, https://doi.org/10.1175/1520-0469(1970)027<1138:TDOTCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., 1993: Mean circulations of boundary-layer rolls in lake-effect snow storms. Bound.-Layer Meteor., 63, 293315, https://doi.org/10.1007/BF00710463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuettner, J., 1959: The band structure of the atmosphere. Tellus, 11, 267294, https://doi.org/10.3402/tellusa.v11i3.9319.

  • Kuettner, J., 1971: Cloud bands in the Earth’s atmosphere: Observations and theory. Tellus, 23, 404426, https://doi.org/10.3402/tellusa.v23i4-5.10519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 10771091, https://doi.org/10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, https://doi.org/10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., and S. P. Palm, 2012: Estimating the orientation and spacing of midlatitude linear convective boundary layer features: Cloud streets. J. Atmos. Sci., 69, 352364, https://doi.org/10.1175/JAS-D-11-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, Y., 1986: Aspect ratios of longitudinal rolls and convection cells observed during cold air outbreaks. J. Atmos. Sci., 43, 2639, https://doi.org/10.1175/1520-0469(1986)043<0026:AROLRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planck, V. G., 1966: Wind conditions in situations of patternform and non-patternform cumulus convection. Tellus, 18, 112, https://doi.org/10.1111/j.2153-3490.1966.tb01437.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santellanes, S. R., G. S. Young, D. J. Stensrud, M. R. Kumjian, and Y. Pan, 2021: Environmental conditions associated with horizontal convective rolls, cellular convection, and no organized circulations. Mon. Wea. Rev., 149, 13051316, https://doi.org/10.1175/MWR-D-20-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., M. R. Kumjian, J. R. Banghoff, and J. D. Sorber, 2019: 10-year warm-season Doppler radar climatology of horizontal convective rolls and cellular convection in central Oklahoma. The Pennsylvania State University Data Commons, accessed 12 March 2021, https://doi.org/10.26208/9d63-5p83.

    • Crossref
    • Export Citation
  • Townsend, A. A., 1965: Excitation of internal waves by a turbulent boundary layer. J. Fluid Mech., 22, 241252, https://doi.org/10.1017/S002211206500071X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, B. A., 1980: Wintertime observations of roll clouds over the Bering Sea. Mon. Wea. Rev., 108, 20242031, https://doi.org/10.1175/1520-0493(1980)108<2024:WOORCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505526, https://doi.org/10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, https://doi.org/10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 11841206, https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1940: Convection and soaring over the open sea. J. Mar. Res., 3, 248253.

  • Xue, M., and W. J. Martin, 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172191, https://doi.org/10.1175/MWR3072.1.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 9971001, https://doi.org/10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 300 300 16
Full Text Views 183 183 7
PDF Downloads 179 179 10

Wide Horizontal Convective Rolls over Land

David J. StensrudaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
,
George S. YoungaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by George S. Young in
Current site
Google Scholar
PubMed
Close
, and
Matthew R. KumjianaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Horizontal convective rolls (HCRs) with aspect ratios ≥ 5, called wide HCRs, are observed over land from WSR-88D radar reflectivity observations in clear air over central Oklahoma. Results indicate that wide HCRs are a natural part of the daily HCR life cycle, occurring most frequently from 1500 to 1700 UTC and from 2300 to 2400 UTC, with the HCRs having aspect ratios ∼ 3 during the rest of their lifetime. Wide HCRs are most likely to be observed from HCRs with lifetimes longer than 5 h. Results show that for HCRs lasting for more than 5 h, 12% have aspect ratios ≥ 5 during HCR formation, whereas 50% of have aspect ratios ≥ 5 at dissipation. An evaluation of radar observations from 50 cases of long-lived HCRs suggests the wide HCRs that occur in tandem with HCR formation early in the day develop in situ with a large aspect ratio. In contrast, the cases of wide HCRs that form late in the day most often appear to develop as specific HCR wavelengths are maintained while roll circulations with smaller wavelengths dissipate. These ephemeral wide HCRs over land deserve attention as the mechanisms leading to their formation are unclear.

Significance Statement

The atmospheric boundary layer extends from the ground up to a typical daytime height between 500 m and 3 km. Within this layer, the flow is often turbulent during the daytime, although there are common structures that help to organize the flow patterns. One of these structures is a field of horizontal counterrotating helical circulations, with parallel upwelling and downwelling zones. This study shows that the separation distance between these long parallel lines of upward and downward motion changes during the day and can be quite large when compared to the depth of the boundary layer, both early in the day and late in the day. Reasons for this behavior are unclear and deserve attention, as the boundary layer is where we spend our lives and has a large influence on our daily activities.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David J. Stensrud, david.stensrud@psu.edu

Abstract

Horizontal convective rolls (HCRs) with aspect ratios ≥ 5, called wide HCRs, are observed over land from WSR-88D radar reflectivity observations in clear air over central Oklahoma. Results indicate that wide HCRs are a natural part of the daily HCR life cycle, occurring most frequently from 1500 to 1700 UTC and from 2300 to 2400 UTC, with the HCRs having aspect ratios ∼ 3 during the rest of their lifetime. Wide HCRs are most likely to be observed from HCRs with lifetimes longer than 5 h. Results show that for HCRs lasting for more than 5 h, 12% have aspect ratios ≥ 5 during HCR formation, whereas 50% of have aspect ratios ≥ 5 at dissipation. An evaluation of radar observations from 50 cases of long-lived HCRs suggests the wide HCRs that occur in tandem with HCR formation early in the day develop in situ with a large aspect ratio. In contrast, the cases of wide HCRs that form late in the day most often appear to develop as specific HCR wavelengths are maintained while roll circulations with smaller wavelengths dissipate. These ephemeral wide HCRs over land deserve attention as the mechanisms leading to their formation are unclear.

Significance Statement

The atmospheric boundary layer extends from the ground up to a typical daytime height between 500 m and 3 km. Within this layer, the flow is often turbulent during the daytime, although there are common structures that help to organize the flow patterns. One of these structures is a field of horizontal counterrotating helical circulations, with parallel upwelling and downwelling zones. This study shows that the separation distance between these long parallel lines of upward and downward motion changes during the day and can be quite large when compared to the depth of the boundary layer, both early in the day and late in the day. Reasons for this behavior are unclear and deserve attention, as the boundary layer is where we spend our lives and has a large influence on our daily activities.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David J. Stensrud, david.stensrud@psu.edu

Supplementary Materials

    • Supplemental Materials (ZIP 25.0 MB)
Save