• Alapaty, K., J. A. Herwehe, T. L. Otte, C. G. Nolte, O. R. Bullock, M. S. Mallard, J. S. Kain, and J. Dudhia, 2012: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL054031.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Search Google Scholar
    • Export Citation
  • Brown, B. R., M. M. Bell, and A. J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett., 43, 910917, https://doi.org/10.1002/2015GL067278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, D., and J. A. Zhang, 2013: Height-dependent transition from 3-D to 2-D turbulence in the hurricane boundary layer. Geophys. Res. Lett., 40, 14391442, https://doi.org/10.1002/grl.50335.

    • Search Google Scholar
    • Export Citation
  • Carper, M. A., and F. Porté-Agel, 2004: The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul., 5, 040, https://10.1088/1468-5248/5/1/040.

    • Crossref
    • Export Citation
  • Chen, X., and G. H. Bryan, 2021: Role of advection of parameterized turbulence kinetic energy in idealized tropical cyclone simulations. J. Atmos. Sci., 78, 35933611, https://doi.org/10.1175/JAS-D-21-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Wang, K. Zhao, and D. Wu, 2017: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev., 145, 877898, https://doi.org/10.1175/MWR-D-16-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., M. Xue, B. Zhou, J. Fang, J. A. Zhang, and F. D. Marks, 2021: Effect of scale-aware planetary boundary layer schemes on tropical cyclone intensification and structural changes in the gray zone. Mon. Wea. Rev., 149, 20792095, https://doi.org/10.1175/MWR-D-20-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077, https://doi.org/10.1175/JAS3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., C. Schär, N. Ban, K. A. Lundquist, L. Schlemmer, and X. Shi, 2019: Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere, 10, 274, https://doi.org/10.3390/atmos10050274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CMA, 2021: China Meteorological Administration (CMA) tropical cyclone best track dataset. Accessed 22 September 2021, https://tcdata.typhoon.org.cn/.

  • Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of us summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos., 122, 27142733, https://doi.org/10.1002/2016JD025896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745765, https://doi.org/10.1175/2008MWR2220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong Kong Observatory, 2012: Report on Severe Typhoon Vicente. Accessed 9 January 2022, https://www.hko.gov.hk/en/informtc/vicente/vicente.htm.

    • Crossref
    • Export Citation
  • Honnert, R., and Coauthors, 2020: The atmospheric boundary layer and the “gray zone” of turbulence: A critical review. J. Geophys. Res. Atmos., 125, e2019JD030317, https://doi.org/10.1029/2019JD030317.

    • Crossref
    • Export Citation
  • Houze, R. A., 2014: Cloud Dynamics. 2nd ed. Academic Press, 287–327.

    • Crossref
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kendon, E. J., A. F. Prein, C. A. Senior, and A. Stirling, 2021: Challenges and outlook for convection-permitting climate modelling. Philos. Trans. Roy. Soc., A379, 20190547, https://doi.org/10.1098/rsta.2019.0547.

    • Crossref
    • Export Citation
  • Kirkil, G., J. Mirocha, E. Bou-Zeid, F. K. Chow, and B. Kosović, 2012: Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF. Mon. Wea. Rev., 140, 266284, https://doi.org/10.1175/MWR-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosović, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151182, https://doi.org/10.1017/S0022112096004697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., H. Yu, M. Ying, B. Zhao, S. Zhang, L. Lin, L. Bai, and R. Wan, 2021: Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci., 38, 690699, https://doi.org/10.1007/s00376-020-0211-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., 2016: The representation of cumulus convection in high-resolution simulations of the 2013 Colorado Front Range flood. Mon. Wea. Rev., 144, 42654278, https://doi.org/10.1175/MWR-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., J. K. Lundquist, and B. Kosović, 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF Model. Mon. Wea. Rev., 138, 42124228, https://doi.org/10.1175/2010MWR3286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and E. W. Uhlhorn, 2014: On the limits of estimating the maximum wind speeds in hurricanes. Mon. Wea. Rev., 142, 28142837, https://doi.org/10.1175/MWR-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedruzo-Bagazgoitia, X., P. A. Jiménez, J. Dudhia, and J. V.-G. de Arellano, 2019: Shallow cumulus representation and its interaction with radiation and surface at the convection gray zone. Mon. Wea. Rev., 147, 24672483, https://doi.org/10.1175/MWR-D-19-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porson, A. N., and Coauthors, 2020: Recent upgrades to the Met Office convective-scale ensemble: An hourly time-lagged 5-day ensemble. Quart. J. Roy. Meteor. Soc., 146, 32453265, https://doi.org/10.1002/qj.3844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, D., and S. Pattnaik, 2018: Sensitivity of tropical cyclone intensity and structure to planetary boundary layer parameterization. Asia-Pac. J. Atmos. Sci., 54, 473488, https://doi.org/10.1007/s13143-018-0053-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, L., and F. Bouttier, 2017: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts. Quart. J. Roy. Meteor. Soc., 143, 30373047, https://doi.org/10.1002/qj.3159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., A. A. Wing, X. Tang, and E. L. Duran, 2020: The critical role of cloud–infrared radiation feedback in tropical cyclone development. Proc. Natl. Acad. Sci. USA, 117, 27 88427 892, https://doi.org/10.1073/pnas.2013584117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, https://doi.org/10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., H. L. Hagen, F. K. Chow, G. H. Bryan, and R. L. Street, 2018: Large-eddy simulation of the stratocumulus-capped boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 75, 611637, https://doi.org/10.1175/JAS-D-17-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., F. K. Chow, R. L. Street, and G. H. Bryan, 2019: Key elements of turbulence closures for simulating deep convection at kilometer-scale resolution. J. Adv. Model. Earth Syst., 11, 818838, https://doi.org/10.1029/2018MS001446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shieh, O. H., M. Fiorino, M. E. Kucas, and B. Wang, 2013: Extreme rapid intensification of Typhoon Vicente (2012) in the South China Sea. Wea. Forecasting, 28, 15781587, https://doi.org/10.1175/WAF-D-13-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2021: A description of the Advanced Research WRF model version 4.3. NCAR Tech. Note NCAR/TN-556+STR, 165 pp., https://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Sroka, S., and S. R. Guimond, 2021: Organized kinetic energy backscatter in the hurricane boundary layer from radar measurements. J. Fluid Mech., 924, A21, https://doi.org/10.1017/jfm.2021.632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suhas, E., and G. J. Zhang, 2014: Evaluation of trigger functions for convective parameterization schemes using observations. J. Climate, 27, 76477666, https://doi.org/10.1175/JCLI-D-13-00718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., B. Zhou, M. Xue, and K. Zhu, 2021: Scale-similarity subgrid-scale turbulence closure for supercell simulations at kilometer-scale resolutions: Comparison against a large-eddy simulation. J. Atmos. Sci., 78, 417437, https://doi.org/10.1175/JAS-D-20-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, J., D. Byrne, J. A. Zhang, Y. Wang, X. Lei, D. Wu, P. Fang, and B. Zhao, 2015: Horizontal transition of turbulent cascade in the near-surface layer of tropical cyclones. J. Atmos. Sci., 72, 49154925, https://doi.org/10.1175/JAS-D-14-0373.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., T. J. Elless, P. P. Papin, and C. A. Davis, 2018: Tropical cyclone track sensitivity in deformation steering flow. Mon. Wea. Rev., 146, 31833201, https://doi.org/10.1175/MWR-D-18-0153.1.

    • Search Google Scholar
    • Export Citation
  • Wu, D., F. Zhang, X. Chen, A. Ryzhkov, K. Zhao, M. R. Kumjian, X. Chen, and P.-W. Chan, 2021: Evaluation of microphysics schemes in tropical cyclones using polarimetric radar observations: Convective precipitation in an outer rainband. Mon. Wea. Rev., 149, 10551068, https://doi.org/10.1175/MWR-D-19-0378.1.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J.-W. Bao, B. Chen, and W. Huang, 2021a: Evaluation and comparison of two deep convection parameterization schemes at convection-permitting resolution. Mon. Wea. Rev., 149, 34193432, https://doi.org/10.1175/MWR-D-21-0016.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., B. Zhou, and F. Ping, 2021b: Effects of subgrid-scale horizontal turbulent mixing on a simulated convective storm at kilometer-scale resolutions. Atmos. Res., 254, 105445, https://doi.org/10.1016/j.atmosres.2020.105445.

  • Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev., 144, 833860, https://doi.org/10.1175/MWR-D-15-0005.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, https://doi.org/10.1175/JAS-D-13-0356.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., K. Zhu, and M. Xue, 2017: A physically based horizontal subgrid-scale turbulent mixing parameterization for the convective boundary layer. J. Atmos. Sci., 74, 26572674, https://doi.org/10.1175/JAS-D-16-0324.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. Tyner, J. A. Zhang, E. Aligo, S. Gopalakrishnan, F. D. Marks, A. Mehra, and V. Tallapragada, 2019: Role of eyewall and rainband eddy forcing in tropical cyclone intensification. Atmos. Chem. Phys., 19, 14 28914 310, https://doi.org/10.5194/acp-19-14289-2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 634 634 26
Full Text Views 148 148 5
PDF Downloads 122 122 6

Impacts of Cumulus Convection and Turbulence Parameterizations on the Convection-Permitting Simulation of Typhoon Precipitation

Xiaoming ShiaDivision of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China

Search for other papers by Xiaoming Shi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5329-7851
and
Yueya WangaDivision of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China

Search for other papers by Yueya Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convection-permitting resolutions, which refer to kilometer-scale horizontal grid spacings, have become increasingly popular in regional numerical weather prediction and climate studies. However, this resolution range is in the gray zone for the simulation of convection, where conventional cumulus convection and subgrid-scale (SGS) turbulence parameterizations are inadequate for such grid spacings due to invalid assumptions and simplifications. Recent studies demonstrated that the magnitudes of SGS fluxes of momentum and scalars are comparable to those of resolved fluxes at convection-permitting resolutions and that horizontal SGS components are as important as the vertical SGS component. Thus, it appears necessary to adapt available schemes to model the SGS effects of convective motions for the gray zone. Here, we investigated the efficacy of separately parameterizing the vertical and horizontal SGS effects in improving the convection-permitting simulation of Typhoon Vicente (2012). To represent the vertical SGS turbulence effect, we evaluated the Grell-3, Tiedtke, and multiscale Kain–Fritsch (MSKF) schemes in the Weather Research and Forecasting (WRF) Model; the MSKF scheme is scale adaptive, whereas the other two are conventional cumulus schemes. For horizontal SGS turbulence, we evaluated the effects of the traditional Smagorinsky scheme and our newly developed reconstruction and nonlinear anisotropy (RNA) model, which models not only downgradient diffusion but also backscatter. We found that the simulation combining the MSKF and RNA schemes exhibits the best skill in predicting precipitation, especially rainfall extremes. The advantages are rooted in the MSKF scheme’s scale-awareness and parameterized cloud–radiation feedback and in the backscatter-enabling capability of the RNA model.

Significance Statement

Operational numerical weather prediction and some climate simulations have approached kilometer-scale horizontal resolutions, called convection-permitting resolutions. However, details of convective storms are not well represented at these resolutions, and small-scale fluid motions can potentially impact the overall simulation performance. In practice, the effects of such unresolved turbulent eddies were once neglected. We suggest representing these effects in the vertical and horizontal directions with an adaptive cumulus convection parameterization and an advanced turbulence model, respectively, which significantly improve the simulation of tropical cyclones. This framework allows us to adapt convection schemes developed by the mesoscale modeling community and turbulence schemes studied by large-eddy simulation groups for representing three-dimensional turbulence in the convection-permitting regime.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoming Shi, shixm@ust.hk

Abstract

Convection-permitting resolutions, which refer to kilometer-scale horizontal grid spacings, have become increasingly popular in regional numerical weather prediction and climate studies. However, this resolution range is in the gray zone for the simulation of convection, where conventional cumulus convection and subgrid-scale (SGS) turbulence parameterizations are inadequate for such grid spacings due to invalid assumptions and simplifications. Recent studies demonstrated that the magnitudes of SGS fluxes of momentum and scalars are comparable to those of resolved fluxes at convection-permitting resolutions and that horizontal SGS components are as important as the vertical SGS component. Thus, it appears necessary to adapt available schemes to model the SGS effects of convective motions for the gray zone. Here, we investigated the efficacy of separately parameterizing the vertical and horizontal SGS effects in improving the convection-permitting simulation of Typhoon Vicente (2012). To represent the vertical SGS turbulence effect, we evaluated the Grell-3, Tiedtke, and multiscale Kain–Fritsch (MSKF) schemes in the Weather Research and Forecasting (WRF) Model; the MSKF scheme is scale adaptive, whereas the other two are conventional cumulus schemes. For horizontal SGS turbulence, we evaluated the effects of the traditional Smagorinsky scheme and our newly developed reconstruction and nonlinear anisotropy (RNA) model, which models not only downgradient diffusion but also backscatter. We found that the simulation combining the MSKF and RNA schemes exhibits the best skill in predicting precipitation, especially rainfall extremes. The advantages are rooted in the MSKF scheme’s scale-awareness and parameterized cloud–radiation feedback and in the backscatter-enabling capability of the RNA model.

Significance Statement

Operational numerical weather prediction and some climate simulations have approached kilometer-scale horizontal resolutions, called convection-permitting resolutions. However, details of convective storms are not well represented at these resolutions, and small-scale fluid motions can potentially impact the overall simulation performance. In practice, the effects of such unresolved turbulent eddies were once neglected. We suggest representing these effects in the vertical and horizontal directions with an adaptive cumulus convection parameterization and an advanced turbulence model, respectively, which significantly improve the simulation of tropical cyclones. This framework allows us to adapt convection schemes developed by the mesoscale modeling community and turbulence schemes studied by large-eddy simulation groups for representing three-dimensional turbulence in the convection-permitting regime.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoming Shi, shixm@ust.hk
Save