• Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, https://doi.org/10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Britt, K. C., P. S. Skinner, P. L. Heinselman, and K. H. Knopfmeier, 2020: Effects of horizontal grid spacing and inflow environment on forecasts of cyclic mesocyclogenesis in NSSL’s Warn-on-Forecast system (WoFS). Wea. Forecasting, 35, 24232444, https://doi.org/10.1175/WAF-D-20-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2020: A real-time, simulated forecasting experiment for advancing the prediction of hazardous convective weather. Bull. Amer. Meteor. Soc., 101, E2022E2024, https://doi.org/10.1175/BAMS-D-19-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. G. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. G. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, https://doi.org/10.1175/MWR3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and D. J. Stensrud, 2004: High resolution analyses of the 8 May 2003 Oklahoma City storm. Part II: EnKF data assimilation and forecast experiments. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.5, http://ams.confex.com/ams/pdfpapers/81393.pdf.

    • Crossref
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Coauthors, 2016: Development of a High-Resolution Rapid Refresh Ensemble (HRRRE) for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8B.2, https://ams.confex.com/ams/28SLS/webprogram/Paper301555.html.

    • Crossref
    • Export Citation
  • Duc, L., K. Saito, and H. Seko, 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, https://doi.org/10.1256/qj.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based remote sensing boundary layer observations on short-term probabilistic forecast of a tornadic supercell event. Wea. Forecasting, 34, 14531476, https://doi.org/10.1175/WAF-D-18-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, https://doi.org/10.1175/MWR-D-13-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., P. Skinner, N. Yussouf, K. Knopfmeier, A. Reinhart, and D. Dowell, 2019: Forecasting high-impact weather in landfalling tropical cyclones using a Warn-on-Forecast system. Bull. Amer. Meteor. Soc., 100, 14051417, https://doi.org/10.1175/BAMS-D-18-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., P. Skinner, K. Knopfmeier, E. Mansell, P. Minnis, R. Palikonda, and W. Smith Jr., 2018: Comparison of cloud microphysics schemes in a warn-on-forecast system using synthetic satellite objects. Wea. Forecasting, 33, 16811708, https://doi.org/10.1175/WAF-D-18-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., P. R. Janish, S. J. Weiss, M. E. Baldwin, R. S. Schneider, and H. E. Brooks, 2003: Collaboration between forecasters and research Scientists at the NSSL and SPC: The spring program. Bull. Amer. Meteor. Soc., 84, 17971806, https://doi.org/10.1175/BAMS-84-12-1797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., J. S. Kain, N. Yussouf, D. C. Dowell, D. M. Wheatley, K. H. Knopfmeier, and T. A. Jones, 2018: Advancing from convection-allowing NWP to Warn-on-Forecast: Evidence of progress. Wea. Forecasting, 33, 599607, https://doi.org/10.1175/WAF-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., C. K. Potvin, P. S. Skinner, and A. E. Reinhart, 2021: The vice and virtue of increased horizontal resolution in ensemble forecasts of tornadic thunderstorms in low-CAPE, high-shear environments. Mon. Wea. Rev., 149, 921944, https://doi.org/10.1175/MWR-D-20-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, M. Xue, and F. Kong, 2017: Comparison of next-day probabilistic severe weather forecasts from coarse- and fine-resolution CAMs and a convection-allowing ensemble. Wea. Forecasting, 32, 14031421, https://doi.org/10.1175/WAF-D-16-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Miller, W., and Coauthors, 2021: Exploring the usefulness of downscaling free forecasts from the Warn-on-Forecast system. Wea. Forecasting, 37, 181203, https://doi.org/10.1175/WAF-D-21-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., and J. Schmidt, 2015: Applying a neighborhood fractions sampling approach as a diagnostic tool. Mon. Wea. Rev., 143, 47364749, https://doi.org/10.1175/MWR-D-14-00411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multi-parameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, https://doi.org/10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., E. M. Murillo, M. L. Flora, and D. M. Wheatley, 2017: Sensitivity of supercell simulations to initial-condition resolution. J. Atmos. Sci., 74, 526, https://doi.org/10.1175/JAS-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., B. T. Gallo, I. L. Jirak, and A. J. Clark, 2019: The High-Resolution Ensemble Forecast (HREF) system: Applications and performance for forecasting convective storms. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A31O-2797.

    • Crossref
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Resolution dependence of initiation and upscale growth of deep convection in convection-allowing forecasts of the 31 May–1 June 2013 supercell and MCS. Mon. Wea. Rev., 143, 43314354, https://doi.org/10.1175/MWR-D-15-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2014: Reproducing the September 2013 record-breaking rainfall over the Colorado Front Range with high-resolution WRF forecasts. Wea. Forecasting, 29, 393402, https://doi.org/10.1175/WAF-D-13-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2019: Revisiting sensitivity to horizontal grid spacing in convection-allowing models over the central and eastern United States. Mon. Wea. Rev., 147, 44114435, https://doi.org/10.1175/MWR-D-19-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, https://doi.org/10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Fossell, R. A. Sobash, and M. L. Weisman, 2017: Toward 1-km ensemble forecasts over large domains. Mon. Wea. Rev., 145, 29432969, https://doi.org/10.1175/MWR-D-16-0410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, H., and Coauthors, 2016: Bridging research to operations transitions: Status and plans of community GSI. Bull. Amer. Meteor. Soc., 97, 14271440, https://doi.org/10.1175/BAMS-D-13-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and L. J. Wicker, 2015: On the impact of additive noise in storm-scale EnKF experiments. Mon. Wea. Rev., 143, 30673086, https://doi.org/10.1175/MWR-D-14-00323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, and M. L. Weisman, 2019: Next-day prediction of tornadoes using convection-allowing models with 1-km horizontal grid spacing. Wea. Forecasting, 34, 11171135, https://doi.org/10.1175/WAF-D-19-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VandenBerg, M. A., M. C. Coniglio, and A. J. Clark, 2014: Comparison of next-day convection-allowing forecasts of storm motion on 1- and 4-km grids. Wea. Forecasting, 29, 878893, https://doi.org/10.1175/WAF-D-14-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2020: Prediction of tornado-like vortex (TLV) embedded in the 8 May 2003 Oklahoma City tornadic supercell initialized from the subkilometer grid spacing analysis produced by the dual-resolution GSI-based EnVar data assimilation system. Mon. Wea. Rev., 148, 29092934, https://doi.org/10.1175/MWR-D-19-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble Kalman filter analyses and forecasts of a severe mesoscale convective system using different choices of microphysics schemes. Mon. Wea. Rev., 142, 32433263, https://doi.org/10.1175/MWR-D-13-00260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, P. S. Skinner, J. J. Choate, and K. E. Klockow-McClain, 2019a: Meteorologists’ interpretations of storm-scale ensemble-based forecast guidance. Wea. Climate Soc., 11, 337354, https://doi.org/10.1175/WCAS-D-18-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., and Coauthors, 2019b: Exploring applications of storm-scale probabilistic Warn-on-Forecast guidance in weather forecasting. Virtual, Augmented and Mixed Reality: Applications and Case Studies (HCII 2019), J. Chen, and G. Fragomeni, Eds., Springer, 557–572, https://doi.org/10.1007/978-3-030-21565-1_39.

    • Crossref
    • Export Citation
  • Wolff, J. K., M. Harrold, T. Fowler, J. H. Gotway, L. Nance, and B. G. Brown, 2014: Beyond the basics: Evaluating model based precipitation forecasts using traditional, spatial, and object-based methods. Wea. Forecasting, 29, 14511472, https://doi.org/10.1175/WAF-D-13-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., F. Kong, K. W. Thomas, J. Gao, Y. Wang, K. Brewster, and K. K. Droegemeier, 2013: Prediction of convective storms at convection-resolving 1-km resolution over continental United States with radar data assimilation: An example case of 26 May 2008 and precipitation forecasts from spring 2009. Adv. Meteor., 2013, 259052, https://doi.org/10.1155/2013/259052.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The Community Noah land surface model with multi-parameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and K. H. Knopfmeier, 2019: Application of warn-on-forecast system for flash-flood producing heavy convective rainfall events. Quart. J. Roy. Meteor. Soc., 145, 23852403, https://doi.org/10.1002/qj.3568.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., J. S. Kain, and A. J. Clark, 2016: Short-term probabilistic forecasts of the 31 May 2013 Oklahoma tornado and flash flood event using a continuous-update-cycle storm-scale ensemble system. Wea. Forecasting, 31, 957983, https://doi.org/10.1175/WAF-D-15-0160.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., T. A. Jones, and P. S. Skinner, 2020: Probabilistic high-impact rainfall forecasts from landfalling tropical cyclones using warn-on-forecast system. Quart. J. Roy. Meteor. Soc., 146, 20502065, https://doi.org/10.1002/qj.3779.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 509 509 16
Full Text Views 248 248 29
PDF Downloads 220 220 33

An Experimental 1-km Warn-on-Forecast System for Hazardous Weather Events

Yaping WangaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Yaping Wang in
Current site
Google Scholar
PubMed
Close
,
Nusrat YussoufaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Nusrat Yussouf in
Current site
Google Scholar
PubMed
Close
,
Christopher A. KerraCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Christopher A. Kerr in
Current site
Google Scholar
PubMed
Close
,
Derek R. StratmanaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Derek R. Stratman in
Current site
Google Scholar
PubMed
Close
, and
Brian C. MatillaaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Brian C. Matilla in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An experimental Warn-on-Forecast System (WoFS) ensemble data assimilation (DA) and prediction system at 1-km grid spacing is developed and tested using two landfalling tropical cyclone (TC) events, one springtime severe thunderstorm event, and one summertime flash flood event. To evaluate the impact of DA at 1-km grid spacing, two experiments are conducted. One experiment, namely, the WoFS-1km, generates 3-h ensemble forecasts from the 1-km WoFS analyses while another experiment, namely, the Downscaled-1km, generates 3-h ensemble forecasts from downscaled 3-km analyses. With 1-km DA, the two landfalling TC events and the summertime event show some improvement in predicting high reflectivity, while the springtime event performs worse. Meanwhile, WoFS-1km is slightly better at predicting heavier precipitation (>20 mm h−1) with lower bias. However, heavy precipitation spatial placement error is only mitigated in one TC event and the summertime event with 1-km DA but is neutral or worse in the other two events. Object-based verification for rotation objects indicates that WoFS-1km performs better in one of the TC events, but worse in the springtime event with lower probability of detection and higher false alarm ratio due to fewer strong rotation objects being generated. The forecast skill of WoFS-1km for the springtime event is degraded mainly because the convective cores do not sufficiently develop as the forecast advances. The conditional benefits from 1-km DA in this study highlights the need for evaluation of a larger sample of convective storm cases and further development of the system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yaping Wang, yaping.wang@noaa.gov

Abstract

An experimental Warn-on-Forecast System (WoFS) ensemble data assimilation (DA) and prediction system at 1-km grid spacing is developed and tested using two landfalling tropical cyclone (TC) events, one springtime severe thunderstorm event, and one summertime flash flood event. To evaluate the impact of DA at 1-km grid spacing, two experiments are conducted. One experiment, namely, the WoFS-1km, generates 3-h ensemble forecasts from the 1-km WoFS analyses while another experiment, namely, the Downscaled-1km, generates 3-h ensemble forecasts from downscaled 3-km analyses. With 1-km DA, the two landfalling TC events and the summertime event show some improvement in predicting high reflectivity, while the springtime event performs worse. Meanwhile, WoFS-1km is slightly better at predicting heavier precipitation (>20 mm h−1) with lower bias. However, heavy precipitation spatial placement error is only mitigated in one TC event and the summertime event with 1-km DA but is neutral or worse in the other two events. Object-based verification for rotation objects indicates that WoFS-1km performs better in one of the TC events, but worse in the springtime event with lower probability of detection and higher false alarm ratio due to fewer strong rotation objects being generated. The forecast skill of WoFS-1km for the springtime event is degraded mainly because the convective cores do not sufficiently develop as the forecast advances. The conditional benefits from 1-km DA in this study highlights the need for evaluation of a larger sample of convective storm cases and further development of the system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yaping Wang, yaping.wang@noaa.gov
Save