• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007a: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, https://doi.org/10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007b: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99111, https://doi.org/10.1016/j.physd.2006.02.011.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and L. Lei, 2013: Empirical localization of observation impact in ensemble Kalman filters. Mon. Wea. Rev., 141, 41404153, https://doi.org/10.1175/MWR-D-12-00330.1.

    • Search Google Scholar
    • Export Citation
  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487490, https://doi.org/10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2007: Flow adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 20292044, https://doi.org/10.1002/qj.169.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61A, 8496, https://doi.org/10.1111/j.1600-0870.2008.00371.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111, https://doi.org/10.1111/j.1600-0870.2008.00372.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon. Wea. Rev., 139, 12411255, https://doi.org/10.1175/2010MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-C., and E. Kalnay, 2022: Applying prior correlations for ensemble-based spatial localization. Nonlinear Processes Geophys., 29, 317327, https://doi.org/10.5194/npg-29-317-2022.

    • Search Google Scholar
    • Export Citation
  • Danforth, C. M., E. Kalnay, and T. Miyoshi, 2007: Estimating and correcting global weather model error. Mon. Wea. Rev., 135, 281299, https://doi.org/10.1175/MWR3289.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and A. M. Da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124, 269295, https://doi.org/10.1002/qj.49712454512.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer, 187 pp.

  • Flowerdew, J., 2015: Towards a theory of optimal localisation. Tellus, 67A, 25257, https://doi.org/10.3402/tellusa.v67.25257.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gharamti, M. E., 2018: Enhanced adaptive inflation algorithm for ensemble filters. Mon. Wea. Rev., 146, 623640, https://doi.org/10.1175/MWR-D-17-0187.1.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. 2nd ed. Wiley, 477 pp.

  • Han, G., X. Wu, S. Zhang, Z. Liu, and W. Li, 2013: Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model. J. Climate, 26, 10 21810 231, https://doi.org/10.1175/JCLI-D-13-00236.1.

    • Search Google Scholar
    • Export Citation
  • Han, G., X.-F. Zhang, S. Zhang, X.-R Wu, and Z. Liu, 2014: Mitigation of coupled model biases induced by dynamical core misfitting through parameter optimization: Simulation with a simple pycnocline prediction model. Nonlinear Processes Geophys., 21, 357366, https://doi.org/10.5194/npg-21-357-2014.

    • Search Google Scholar
    • Export Citation
  • Han, G., X. Wu, S. Zhang, Z. Liu, I. M. Navon, and W. Li, 2015: A study of coupling parameter estimation implemented by 4D-Var and EnKF with a simple coupled system. Adv. Meteor., 2015, 530764, https://doi.org/10.1155/2015/530764.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Search Google Scholar
    • Export Citation
  • Kadow, C., S. Illing, O. Kunst, H. W. Rust, H. Pohlmann, W. A. Müller, and U. Cubasch, 2016: Evaluation of forecasts by accuracy and spread in the MiKlip decadal climate prediction system. Meteor. Z., 25, 631–643, https://doi.org/10.1127/metz/2015/0639.

    • Search Google Scholar
    • Export Citation
  • Keller, J. D., and A. Hense, 2011: A new non-Gaussian evaluation method for ensemble forecasts based on analysis rank histograms. Meteor. Z., 20, 107117, https://doi.org/10.1127/0941-2948/2011/0217.

    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. L. Anderson, 2014: Empirical localization of observations for serial ensemble Kalman filter data assimilation in an atmospheric general circulation model. Mon. Wea. Rev., 142, 18351851, https://doi.org/10.1175/MWR-D-13-00288.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., E. Kalnay, and T. Miyoshi, 2009: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 523533, https://doi.org/10.1002/qj.371.

    • Search Google Scholar
    • Export Citation
  • Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS method for large scale optimization. Math. Program., 45, 503528, https://doi.org/10.1007/BF01589116.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808, https://doi.org/10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 15191535, https://doi.org/10.1175/2010MWR3570.1.

    • Search Google Scholar
    • Export Citation
  • Moosavi, A., A. Attia, and A. Sandu, 2019: Tuning covariance localization using machine learning. Proc. 19th Int. Conf. on Computational Science, Faro, Portugal, IEEE, 199212.

  • Palmer, T., R. Buizza, R. Hagedorn, A. Lawrence, M. Leutbecher, and L. Smith, 2006: Ensemble prediction: A pedagogical perspective. ECMWF Newsletter, No. 106, ECMWF, Reading, United Kingdom, 1017.

  • Polkova, I., and Coauthors, 2019: Initialization and ensemble generation for decadal climate predictions: A comparison of different methods. J. Adv. Model. Earth Syst., 11, 149172, https://doi.org/10.1029/2018MS001439.

    • Search Google Scholar
    • Export Citation
  • Robert, A., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG Symp. on Numerical Weather Prediction, Tokyo, Japan, Japan Meteorological Society, 1924.

  • Ruiz, J., M. Pulido, and T. Miyoshi, 2013: Estimating model parameters with ensemble-based data assimilation: A review. J. Meteor. Soc. Japan, 91, 7999, https://doi.org/10.2151/jmsj.2013-201.

    • Search Google Scholar
    • Export Citation
  • Wu, X., 2016: Improving EnKF-based initialization for ENSO prediction using a hybrid adaptive method. J. Climate, 29, 73657381, https://doi.org/10.1175/JCLI-D-16-0062.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., S. Zhang, Z. Liu, A. Rosati, T. L. Delworth, and Y. Liu, 2012: Impact of geographic-dependent parameter optimization on climate estimation and prediction: Simulation with an intermediate coupled model. Mon. Wea. Rev., 140, 39563971, https://doi.org/10.1175/MWR-D-11-00298.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. Li, G. Han, S. Zhang, and X. Wang, 2014: A compensatory approach of the fixed localization in EnKF. Mon. Wea. Rev., 142, 37133733, https://doi.org/10.1175/MWR-D-13-00369.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. Li, G. Han, L. Zhang, C. Shao, C. Sun, and L. Xuan, 2015: An adaptive compensatory approach of the fixed localization in the EnKF. Mon. Wea. Rev., 143, 47144735, https://doi.org/10.1175/MWR-D-15-0060.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., G. Han, S. Zhang, and Z. Liu, 2016: A study of the impact of parameter optimization on ENSO predictability with an intermediate coupled model. Climate Dyn., 46, 711727, https://doi.org/10.1007/s00382-015-2608-z.

    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., E. Kalnay, and B. R. Hunt, 2012: Handling nonlinearity in an ensemble Kalman filter: Experiments with the three-variable Lorenz model. Mon. Wea. Rev., 140, 26282646, https://doi.org/10.1175/MWR-D-11-00313.1.

    • Search Google Scholar
    • Export Citation
  • Ying, Y., F. Zhang, and J. L. Anderson, 2018: On the selection of localization radius in ensemble filtering for multiscale quasigeostrophic dynamics. Mon. Wea. Rev., 146, 543560, https://doi.org/10.1175/MWR-D-17-0336.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., 2011a: Impact of observation-optimized model parameters on decadal predictions: Simulation with a simple pycnocline prediction model. Geophys. Res. Lett., 38, L02702, https://doi.org/10.1029/2010GL046133.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., 2011b: A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a simple pycnocline prediction model. J. Climate, 24, 62106226, https://doi.org/10.1175/JCLI-D-10-05003.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and J. L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus, 55A, 126147, https://doi.org/10.3402/tellusa.v55i2.12087.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. Harrison, A. T. Wittenberg, A. Rosati, J. L. Anderson, and V. Balaji, 2005: Initialization of an ENSO forecast system using a parallelized ensemble filter. Mon. Wea. Rev., 133, 31763201, https://doi.org/10.1175/MWR3024.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., Z. Liu, A. Rosati, and T. Delworth, 2012: A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus, 64A, 10963, https://doi.org/10.3402/tellusa.v64i0.10963.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and Coauthors, 2020: Coupled data assimilation and parameter estimation in coupled ocean-atmosphere models: A review. Climate Dyn., 54, 51275144, https://doi.org/10.1007/s00382-020-05275-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Zhang, Z. Liu, X. Wu, and G. Han, 2015: Parameter optimization in an intermediate coupled climate model with biased physics. J. Climate, 28, 12271247, https://doi.org/10.1175/JCLI-D-14-00348.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Deng, S. Zhang, Z. Liu, and C. Liu, 2019: Sensitivity determined simultaneous estimation of multiple parameters in coupled models. Part 1: Based on single model component sensitivities. Climate Dyn., 53, 53495373, https://doi.org/10.1007/s00382-019-04865-3.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 2016: Data assimilation for coupled modeling systems. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Vol. 3, Springer, 5570.

All Time Past Year Past 30 Days
Abstract Views 334 334 12
Full Text Views 105 105 3
PDF Downloads 95 95 3

EAKF-Based Parameter Optimization Using a Hybrid Adaptive Method

Lige CaoaSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Lige Cao in
Current site
Google Scholar
PubMed
Close
,
Xinrong WubKey Laboratory of Marine Environmental Information Technology, National Marine Data and Information Service, Ministry of Natural Resources, Tianjin, China

Search for other papers by Xinrong Wu in
Current site
Google Scholar
PubMed
Close
,
Guijun HanaSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Guijun Han in
Current site
Google Scholar
PubMed
Close
,
Wei LiaSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
,
Xiaobo WuaSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Xiaobo Wu in
Current site
Google Scholar
PubMed
Close
,
Haowen WuaSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Haowen Wu in
Current site
Google Scholar
PubMed
Close
,
Chaoliang LiaSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Chaoliang Li in
Current site
Google Scholar
PubMed
Close
,
Yundong LiaSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Yundong Li in
Current site
Google Scholar
PubMed
Close
, and
Gongfu ZhouaSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Gongfu Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To effectively reduce model bias and improve assimilation quality, we adopt a hybrid adaptive approach of ensemble adjustment Kalman filter (EAKF) and multigrid analysis (MGA), called EAKF-MGA, to implement parameter optimization as follows. For each assimilation cycle, observations are used to adjust the prior ensembles of both state variables and parameters using the EAKF without inflation. Then, the MGA is adaptively triggered to extract multiscale information from the observational residual to innovate the ensemble mean of the state once again. Results of biased twin experiments consisting of a barotropic spectral model and idealized observation systems show that the proposed EAKF-MGA is insensitive to state variance inflation and localization during the parameter optimization process, compared with the EAKF with adaptive inflation. We also find that computational efficiency is another important advantage of the EAKF-MGA for both state estimation and parameter estimation since extremely small ensemble size is allowed, while the EAKF with adaptive inflation does not work anymore. In essence, the EAKF-MGA is designed to estimate and correct systematic errors jointly with model’s state variables. Through alleviating biases, including the model bias caused by the biased parameter and the analysis bias resulting from the sampling noise given the limited ensemble size, it can be guaranteed that the analysis in the EAKF-MGA will be proceeded onward with the standard assumption of the unbiased model background field in modern data assimilation theory to be met.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xinrong Wu, xrw_nmdis@163.com; Guijun Han, guijun_han@tju.edu.cn

Abstract

To effectively reduce model bias and improve assimilation quality, we adopt a hybrid adaptive approach of ensemble adjustment Kalman filter (EAKF) and multigrid analysis (MGA), called EAKF-MGA, to implement parameter optimization as follows. For each assimilation cycle, observations are used to adjust the prior ensembles of both state variables and parameters using the EAKF without inflation. Then, the MGA is adaptively triggered to extract multiscale information from the observational residual to innovate the ensemble mean of the state once again. Results of biased twin experiments consisting of a barotropic spectral model and idealized observation systems show that the proposed EAKF-MGA is insensitive to state variance inflation and localization during the parameter optimization process, compared with the EAKF with adaptive inflation. We also find that computational efficiency is another important advantage of the EAKF-MGA for both state estimation and parameter estimation since extremely small ensemble size is allowed, while the EAKF with adaptive inflation does not work anymore. In essence, the EAKF-MGA is designed to estimate and correct systematic errors jointly with model’s state variables. Through alleviating biases, including the model bias caused by the biased parameter and the analysis bias resulting from the sampling noise given the limited ensemble size, it can be guaranteed that the analysis in the EAKF-MGA will be proceeded onward with the standard assumption of the unbiased model background field in modern data assimilation theory to be met.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xinrong Wu, xrw_nmdis@163.com; Guijun Han, guijun_han@tju.edu.cn
Save