Postprocessing Ensemble Weather Forecasts for Introducing Multisite and Multivariable Correlations Using Rank Shuffle and Copula Theory

Jie Chen aState Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

Search for other papers by Jie Chen in
Current site
Google Scholar
PubMed
Close
,
Xiangquan Li bChangjiang Institute of Survey, Planning, Design and Research, Wuhan, China

Search for other papers by Xiangquan Li in
Current site
Google Scholar
PubMed
Close
,
Chong-Yu Xu cDepartment of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Chong-Yu Xu in
Current site
Google Scholar
PubMed
Close
,
Xunchang John Zhang dUSDA-ARS Grazinglands Research Laboratory, El Reno, Oklahoma

Search for other papers by Xunchang John Zhang in
Current site
Google Scholar
PubMed
Close
,
Lihua Xiong aState Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

Search for other papers by Lihua Xiong in
Current site
Google Scholar
PubMed
Close
, and
Qiang Guo aState Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

Search for other papers by Qiang Guo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Statistical methods have been widely used to postprocess ensemble weather forecasts for hydrological predictions. However, most of the statistical postprocessing methods apply to a single weather variable at a single location, thus neglecting the intersite and intervariable dependence structures of forecast variables. This study synthesized a multisite and multivariate (MSMV) postprocessing framework that extends the univariate method to the MSMV version by directly rearranging the postprocessed ensemble members (post-reordering strategy) or by rearranging the latent variables used in the univariate method (pre-reordering strategy). Based on the univariate generator-based postprocessing (GPP) method, the two reordering strategies and three dependence reconstruction methods [rank shuffle (RS), Gaussian copula (GC), and empirical copula (EC)] totaling six MSMV methods (RS-Pre, GC-Pre, EC-Pre, RS-Post, GC-Post, and EC-Post) were evaluated in postprocessing ensemble precipitation and temperature forecasts for the Xiangjiang basin in China using the 11-member ensemble forecasts from the Global Ensemble Forecasting System (GEFS). The results showed that raw GEFS forecasts tend to be biased for both the forecast ensembles and the intersite and intervariable dependencies. The univariate method can improve the univariate performance of ensemble mean and spread but misrepresent the intersite and intervariable dependence among the forecast variables. The MSMV framework can well utilize the advantages of the univariate method and also reconstruct the intersite and intervariable dependencies. Among the six methods, RS-Pre, RS-Post, GC-Post, and EC-Post perform better than the others with respect to reproducing the univariate statistics and multivariable dependences. The post-reordering strategy is recommended to combine the univariate method (i.e., GPP) and reconstruction methods.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jie Chen, jiechen@whu.edu.cn; Xiangquan Li, leexiangquan@whu.edu.cn

Abstract

Statistical methods have been widely used to postprocess ensemble weather forecasts for hydrological predictions. However, most of the statistical postprocessing methods apply to a single weather variable at a single location, thus neglecting the intersite and intervariable dependence structures of forecast variables. This study synthesized a multisite and multivariate (MSMV) postprocessing framework that extends the univariate method to the MSMV version by directly rearranging the postprocessed ensemble members (post-reordering strategy) or by rearranging the latent variables used in the univariate method (pre-reordering strategy). Based on the univariate generator-based postprocessing (GPP) method, the two reordering strategies and three dependence reconstruction methods [rank shuffle (RS), Gaussian copula (GC), and empirical copula (EC)] totaling six MSMV methods (RS-Pre, GC-Pre, EC-Pre, RS-Post, GC-Post, and EC-Post) were evaluated in postprocessing ensemble precipitation and temperature forecasts for the Xiangjiang basin in China using the 11-member ensemble forecasts from the Global Ensemble Forecasting System (GEFS). The results showed that raw GEFS forecasts tend to be biased for both the forecast ensembles and the intersite and intervariable dependencies. The univariate method can improve the univariate performance of ensemble mean and spread but misrepresent the intersite and intervariable dependence among the forecast variables. The MSMV framework can well utilize the advantages of the univariate method and also reconstruct the intersite and intervariable dependencies. Among the six methods, RS-Pre, RS-Post, GC-Post, and EC-Post perform better than the others with respect to reproducing the univariate statistics and multivariable dependences. The post-reordering strategy is recommended to combine the univariate method (i.e., GPP) and reconstruction methods.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jie Chen, jiechen@whu.edu.cn; Xiangquan Li, leexiangquan@whu.edu.cn
Save
  • Bárdossy, A., and G. G. S. Pegram, 2009: Copula based multisite model for daily precipitation simulation. Hydrol. Earth Syst. Sci., 13, 22992314, https://doi.org/10.5194/hess-13-2299-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrocal, V. J., A. E. Raftery, and T. Gneiting, 2007: Combining spatial statistical and ensemble information in probabilistic weather forecasts. Mon. Wea. Rev., 135, 13861402, https://doi.org/10.1175/MWR3341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrocal, V. J., A. E. Raftery, and T. Gneiting, 2008: Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann. Appl. Stat., 2, 11701193, https://doi.org/10.1214/08-AOAS203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brissette, F. P., M. Khalili, and R. Leconte, 2007: Efficient stochastic generation of multi-site synthetic precipitation data. J. Hydrol., 345, 121133, https://doi.org/10.1016/j.jhydrol.2007.06.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and L. A. Smith, 2008: From ensemble forecasts to predictive distribution functions. Tellus, 60A, 663678, https://doi.org/10.1111/j.1600-0870.2008.00333.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. D., J. Demargne, D.-J. Seo, and Y. Liu, 2010: The Ensemble Verification System (EVS): A software tool for verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations. Environ. Modell. Software, 25, 854872, https://doi.org/10.1016/j.envsoft.2010.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and F. P. Brissette, 2015: Combining stochastic weather generation and ensemble weather forecasts for short-term streamflow prediction. Water Resour. Manage., 29, 33293342, https://doi.org/10.1007/s11269-015-1001-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., X.-C. Zhang, W.-Z. Liu, and Z. Li, 2009: Evaluating and extending CLIGEN precipitation generation for the loess plateau of China. J. Amer. Water Resour. Assoc., 45, 378396, https://doi.org/10.1111/j.1752-1688.2008.00296.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and Z. Li, 2014a: Postprocessing of ensemble weather forecasts using a stochastic weather generator. Mon. Wea. Rev., 142, 11061124, https://doi.org/10.1175/MWR-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and X. C. Zhang, 2014b: A multi-site stochastic weather generator for daily precipitation and temperature. Trans. ASABE, 57, 13751391, https://doi.org/10.13031/trans.57.10685.

    • Search Google Scholar
    • Export Citation
  • Chen, J., H. Chen, and S. L. Guo, 2018: Multi-site precipitation downscaling using a stochastic weather generator. Climate Dyn., 50, 19751992, https://doi.org/10.1007/s00382-017-3731-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, 2004: The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5, 243262, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldmann, K., M. Scheuerer, and T. L. Thorarinsdottir, 2015: Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous Gaussian regression. Mon. Wea. Rev., 143, 955971, https://doi.org/10.1175/MWR-D-14-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flowerdew, J., 2012: Calibration and combination of medium range ensemble precipitation forecasts. Tech. Rep. 567, United Kingdom Met Office, 21 pp.

    • Search Google Scholar
    • Export Citation
  • Gel, Y., A. E. Raftery, and T. Gneiting, 2004: Calibrated probabilistic mesoscale weather field forecasting. J. Amer. Stat. Assoc., 99, 575583, https://doi.org/10.1198/016214504000000872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2005: Weather forecasting with ensemble methods. Science, 310, 248249, https://doi.org/10.1126/science.1115255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, https://doi.org/10.1175/MWR2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. J. Roy. Stat. Soc. Ser. B Stat. Methodol., 69, 243268, https://doi.org/10.1111/j.1467-9868.2007.00587.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., L. I. Stanberry, E. P. Grimit, L. Held, and N. A. Johnson, 2008: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. TEST, 17, 211235, https://doi.org/10.1007/s11749-008-0114-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Q., J. Chen, X. Zhang, M. Shen, H. Chen, and S. Guo, 2019: A new two-stage multivariate quantile mapping method for bias correcting climate model outputs. Climate Dyn., 53, 36033623, https://doi.org/10.1007/s00382-019-04729-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts Part I: Two-meter temperatures. Mon. Wea. Rev., 136, 26082619, https://doi.org/10.1175/2007MWR2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327, https://doi.org/10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, https://doi.org/10.1175/2007MWR2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, Z., and V. P. Singh, 2016: Review of dependence modeling in hydrology and water resources. Prog. Phys. Geogr., 40, 549578, https://doi.org/10.1177/0309133316632460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iman, R. L., and W. J. Conover, 1982: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Part B, 11, 311334, https://doi.org/10.1080/03610918208812265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, C., L. Xiong, L. Yan, J. Dong, and C.-Y. Xu, 2019: Multivariate hydrologic design methods under nonstationary conditions and application to engineering practice. Hydrol. Earth Syst. Sci., 23, 16831704, https://doi.org/10.5194/hess-23-1683-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keune, J., C. Ohlwein, and A. Hense, 2014: Multivariable probabilistic analysis and predictability of medium-range ensemble weather forecasts. Mon. Wea. Rev., 142, 40744090, https://doi.org/10.1175/MWR-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, https://doi.org/10.1016/j.jcp.2007.02.014.

  • Liu, X., and P. Coulibaly, 2011: Downscaling ensemble weather predictions for improved week-2 hydrologic forecasting. J. Hydrometeor., 12, 15641580, https://doi.org/10.1175/2011JHM1366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., Q. Duan, C. Miao, A. Ye, W. Gong, and Z. Di, 2017: A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip. Rev.: Water, 4, e1246, https://doi.org/10.1002/wat2.1246.

    • Search Google Scholar
    • Export Citation
  • Li, X., and V. Babovic, 2019: A new scheme for multivariable, multisite weather generator with inter-variable, inter-site dependence and inter-annual variability based on empirical copula approach. Climate Dyn., 52, 22472267, https://doi.org/10.1007/s00382-018-4249-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., J. Chen, C.-Y. Xu, L. Li, and H. Chen, 2019: Performance of post-processed methods in hydrological predictions evaluated by deterministic and probabilistic criteria. Water Resour. Manage., 33, 32893302, https://doi.org/10.1007/s11269-019-02302-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., J. Chen, C.-Y. Xu, H. Chen, and S. Guo, 2020: Intercomparison of multiple statistical methods in post-processing ensemble precipitation and temperature forecasts. Meteor. Appl., 27, e1935, https://doi.org/10.1002/met.1935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., 2013: A new framework for multi-site weather generator: A two-stage model combining a parametric method with a distribution-free shuffle procedure. Climate Dyn., 43, 657669, https://doi.org/10.1007/s00382-013-1979-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, A., A. Lenkoski, and T. L. Thorarinsdottir, 2013: Multivariable probabilistic forecasting using ensemble Bayesian model averaging and copulas. Quart. J. Roy. Meteor. Soc., 139, 982991, https://doi.org/10.1002/qj.2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinson, P., H. Madsen, H. A. Nielsen, G. Papaefthymiou, and B. Kloeckl, 2009: From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy, 12, 5162, https://doi.org/10.1002/we.284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebonato, R., and P. Jäckel, 2000: The most general methodology to create valid correlation matrix for risk management and option pricing purposes. J. Risk, 2, 1727, https://doi.org/10.21314/JOR.2000.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., 2016: A similarity-based implementation of the Schaake shuffle. Mon. Wea. Rev., 144, 19091921, https://doi.org/10.1175/MWR-D-15-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., 2017: Ensemble calibration with preserved correlations: Unifying and comparing ensemble copula coupling and member-by-member postprocessing. Quart. J. Roy. Meteor. Soc., 143, 9991008, https://doi.org/10.1002/qj.2984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble Copula coupling. Stat. Sci., 28, 616640, https://doi.org/10.1214/13-STS443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015a: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, https://doi.org/10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015b: Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon. Wea. Rev., 143, 13211334, https://doi.org/10.1175/MWR-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., and K. J. Kok, 2010: A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Mon. Wea. Rev., 138, 41994211, https://doi.org/10.1175/2010MWR3285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuhen, N., T. L. Thorarinsdottir, and T. Gneiting, 2012: Ensemble model output statistics for wind vectors. Mon. Wea. Rev., 140, 32043219, https://doi.org/10.1175/MWR-D-12-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M. L., A. E. Raftery, T. Gneiting, and C. Fraley, 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 32093220, https://doi.org/10.1175/MWR3441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M. L., T. Gneiting, and A. E. Raftery, 2013: Probabilistic wind vector forecasting using ensembles and Bayesian model averaging. Mon. Wea. Rev., 141, 21072119, https://doi.org/10.1175/MWR-D-12-00002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., M. Scheuerer, and C. Heinz, 2016: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms. J. Comput. Graph. Stat., 25, 105122, https://doi.org/10.1080/10618600.2014.977447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1998: Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol., 210, 178191, https://doi.org/10.1016/S0022-1694(98)00186-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Comparison of ensemble-MOS methods in the Lorenz ’96 setting. Meteor. Appl., 13, 243256, https://doi.org/10.1017/S1350482706002192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, https://doi.org/10.1002/met.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2015: Multivariable ensemble model output statistics using empirical copulas. Quart. J. Roy. Meteor. Soc., 141, 945952, https://doi.org/10.1002/qj.2414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 13, 23792390, https://doi.org/10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiong, L., K.-X. Yu, and L. Gottschalk, 2014: Estimation of the distribution of annual runoff from climatic variables using copulas. Water Resour. Res., 50, 71347152, https://doi.org/10.1002/2013WR015159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiong, L., C. Jiang, C.-Y. Xu, K.-X. Yu, and S. Guo, 2015: A framework of change-point detection for multivariate hydrological series. Water Resour. Res., 51, 81988217, https://doi.org/10.1002/2015WR017677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., C.-Y. Xu, H. Chen, Z. Zhang, and L. Li, 2013: Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J. Hydrol., 505, 112, https://doi.org/10.1016/j.jhydrol.2013.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., J. Chen, X. Li, H. Chen, P. Xie, and W. Li, 2019: Combining postprocessed ensemble weather forecasts and multiple hydrological models for ensemble streamflow predictions. J. Hydrol. Eng., 25, 04019060, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-C., 2005: Generating correlative storm variables for CLIGEN using a distribution-free approach. Trans. ASAE, 48, 567575, https://doi.org/10.13031/2013.18331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., 2005: Ensemble forecast: A new approach to uncertainty and predictability. Adv. Atmos. Sci., 22, 781788, https://doi.org/10.1007/BF02918678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 7383, https://doi.org/10.1175/1520-0477(2002)083<0073:TEVOEB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 359 0 0
Full Text Views 332 177 5
PDF Downloads 345 162 11